Several Families of q-supercongruences on Multiple Sums

Chun Wang , Quan Zhao

Frontiers of Mathematics ›› : 1 -13.

PDF
Frontiers of Mathematics ›› :1 -13. DOI: 10.1007/s11464-025-0056-6
Research Article
research-article

Several Families of q-supercongruences on Multiple Sums

Author information +
History +
PDF

Abstract

In this paper, in view of El Bachraoui’s lemma, the creative microscoping method introduced by Guo and Zudilin, the Chinese remainder theorem for coprime polynomials, and Jackson’s 6ϕ5 summation formula, we establish several families of q-supercongruences modulo the fourth power of a cyclotomic polynomial on double, triple and quadruple sums respectively.

Keywords

basic hypergeometric series / q-supercongruences / creative microscoping / Chinese remainder theorem / 33D15 / 11A07 / 11B65

Cite this article

Download citation ▾
Chun Wang, Quan Zhao. Several Families of q-supercongruences on Multiple Sums. Frontiers of Mathematics 1-13 DOI:10.1007/s11464-025-0056-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berndt BC, Rankin RA. Ramanujan. Letters and Commentary, 1995, Providence, RI, Amer. Math. Soc. 9

[2]

El Bachraoui M. On supercongruences for truncated sums of squares of basic hypergeometric series. Ramanujan J., 2021, 54(2): 415-426

[3]

El Bachraoui M. N-tuple sum analogues for Ramanujan-type congruences. Proc. Amer. Math. Soc., 2023, 151(1): 1-16

[4]

Gasper G, Rahman M. Basic Hypergeometric Series, 2004Second EditionCambridge, Cambridge University Press 96

[5]

Guo V.J.W., q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping. Adv. in Appl. Math., 2020, 120: Paper No. 102078, 17 pp.

[6]

Guo V.J.W., Further q-supercongruences from a transformation of Rahman. J. Math. Anal. Appl., 2022, 511(1): Paper No. 126062, 10 pp.

[7]

Guo V.J.W., Li L., q-Supercongruences from squares of basic hypergeometric series. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2023, 117(1): Paper No. 26, 18 pp.

[8]

Guo VJW, Schlosser MJ. A family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial. Israel J. Math., 2020, 240(2): 821-835

[9]

Guo V.J.W., Schlosser M.J., Some new q-congruences for truncated basic hypergeometric series: even powers. Results Math., 2020, 75(1): Paper No. 1, 15 pp.

[10]

Guo V.J.W., Schlosser M.J., A new family of q-supercongruences modulo the fourth power of a cyclotomic polynomial. Results Math., 2020, 75(4): Paper No. 155, 13 pp.

[11]

Guo VJW, Zudilin W. A q-microscope for supercongruences. Adv. Math., 2019, 346: 329-358

[12]

He B. Supercongruences on truncated hypergeometric Series. Results Math., 2017, 72(1–2): 303-317

[13]

Li L. Some q-supercongruences for truncated forms of squares of basic hypergeometric series. J. Difference Equ. Appl., 2021, 27(1): 16-25

[14]

Liu Y, Wang X. q-analogues of the (G.2) supercongruence of Van Hamme. Rocky Mountain J. Math., 2021, 51(4): 1329-1340

[15]

Liu Y., Wang X., q-analogues of two Ramanujan-type supercongruences. J. Math. Anal. Appl., 2021, 502(1): Paper No. 125238, 14 pp.

[16]

Liu Y., Wang X., Some q-supercongruences from a quadratic transformation by Rahman. Results Math., 2022, 77(1): Paper No. 44, 14 pp.

[17]

Song H., Wang C., Some q-supercongruences modulo the fifth power of a cyclotomic polynomial from squares of q-hypergeometric series. Results Math., 2021, 76(4): Paper No. 222, 17 pp.

[18]

Swisher H., On the supercongruence conjectures of van Hamme. Res. Math. Sci., 2015, 2: Art. 18, 21 pp.

[19]

Van Hamme L. Some conjectures concerning partial sums of generalized hypergeometric series. p-Adic Functional Analysis (Nijmegen, 1996), 1997, New York, Dekker223236192

[20]

Wang C., A new q-extension of the (H.2) congruence of Van Hamme for primes p ≡ 1 (mod 4). Results Math., 2021, 76(4): Paper No. 205, 10 pp.

[21]

Wang X., Xu C., q-Supercongruences on triple and quadruple sums. Results Math., 2023, 78(1): Paper No. 27, 14 pp.

[22]

Wei C., A further q-analogue of Van Hamme’s (H.2) supercongruence for any prime p ≡ 1 (mod 4). Results Math., 2021, 76(2): Paper No. 92, 9 pp.

[23]

Wei C., Some q-supercongruences modulo the fourth power of a cyclotomic polynomial. J. Combin. Theory Ser. A, 2021, 182: Paper No. 105469, 15 pp.

[24]

Wei C, Li C. Some q-supercongruences for double and triple basic hypergeometric series. Proc. Amer. Math. Soc., 2024, 152(6): 2283-2296

[25]

Zudilin W. Ramanujan-type supercongruences. J. Number Theory, 2009, 129(8): 1848-1857

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/