Arithmetic Properties of Cantor Sets Involving Non-diagonal Forms

Haotian Zhao

Frontiers of Mathematics ›› : 1 -28.

PDF
Frontiers of Mathematics ›› : 1 -28. DOI: 10.1007/s11464-025-0047-7
Research Article
research-article

Arithmetic Properties of Cantor Sets Involving Non-diagonal Forms

Author information +
History +
PDF

Abstract

We show conditions on k such that any number x in the interval $[0,{k\over 2}]$ can be represented in the form $x_{1}^{a_{1}}x_{2}^{a_{2}}+x_{3}^{a_{3}}x_{4}^{a_{4}}+\cdots+x_{k-1}^{a_{k-1}}x_{k}^{a_{k}}$, where the exponents a2i−1 and a2i are positive integers satisfying a2i−1 + a2i = s for $i=1,2,\ldots,{k\over 2}$, and each xi belongs to the generalized Cantor set. Moreover, we discuss different types of non-diagonal polynomials and clarify the optimal results in low-dimensional cases.

Keywords

Cantor set / Waring’s problem / non-diagonal forms / 28A80 / 11P05

Cite this article

Download citation ▾
Haotian Zhao. Arithmetic Properties of Cantor Sets Involving Non-diagonal Forms. Frontiers of Mathematics 1-28 DOI:10.1007/s11464-025-0047-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/