PDF
Abstract
We show conditions on k such that any number x in the interval $[0,{k\over 2}]$ can be represented in the form $x_{1}^{a_{1}}x_{2}^{a_{2}}+x_{3}^{a_{3}}x_{4}^{a_{4}}+\cdots+x_{k-1}^{a_{k-1}}x_{k}^{a_{k}}$, where the exponents a2i−1 and a2i are positive integers satisfying a2i−1 + a2i = s for $i=1,2,\ldots,{k\over 2}$, and each xi belongs to the generalized Cantor set. Moreover, we discuss different types of non-diagonal polynomials and clarify the optimal results in low-dimensional cases.
Keywords
Cantor set
/
Waring’s problem
/
non-diagonal forms
/
28A80
/
11P05
Cite this article
Download citation ▾
Haotian Zhao.
Arithmetic Properties of Cantor Sets Involving Non-diagonal Forms.
Frontiers of Mathematics 1-28 DOI:10.1007/s11464-025-0047-7
| [1] |
AthreyaJS, ReznickB, TysonJT. Cantor set arithmetic. Amer. Math. Monthly, 2019, 126(1): 4-17
|
| [2] |
CuiL, MaM. On arithmetic properties of Cantor sets. Sci. China Math., 2022, 65(10): 2035-2060
|
| [3] |
GuoY. Waring-Hilbert problem on Cantor sets. Expo. Math., 2021, 39(2): 165-181
|
| [4] |
HuaLKIntroduction to Number Theory, 1982, Berlin-New York. Springer-Verlag.
|
| [5] |
PanCD, PanCBFundamentals of Analytic Number Theory, 1991, Beijing. Science and Technology Press. (in Chinese)
|
| [6] |
RudinWReal and Complex Analysis, 1987Third EditionNew York. McGraw-Hill Book Co..
|
| [7] |
SteinhausH. Mowa Własność Mnogości Cantora. Wector, 1917, 1: 1-3Selected Papers, Warsaw: PWN—Polish Scientific Publishers, 1985
|
| [8] |
WangZ, JiangK, LiW, ZhaoB. On the sum of squares of the middle-third Cantor set. J. Number Theory, 2021, 218: 209-222
|
| [9] |
YeX, HuangW, ShaoSAn Introduction to Topological Dynamics, 2008, Beijing. Science Press. (in Chinese)
|
RIGHTS & PERMISSIONS
Peking University