Smooth Modules of the 2D Supersymmetric Galilean Conformal Algebra

Zhenyuan Ni , Yun Gao , Jiancai Sun

Frontiers of Mathematics ›› : 1 -33.

PDF
Frontiers of Mathematics ›› : 1 -33. DOI: 10.1007/s11464-025-0042-z
Research Article

Smooth Modules of the 2D Supersymmetric Galilean Conformal Algebra

Author information +
History +
PDF

Abstract

The Galilean conformal algebra, a non-semisimple Lie algebra, is closely associated with the non-relativistic limit of the AdS/CFT correspondence. This paper investigates an infinite-dimensional Lie superalgebra called the 2D supersymmetric Galilean conformal algebra, which is obtained by the method of group contraction on 2D N = (2, 2) superconformal algebra. Physically, this superalgebra is relevant to superstring theory and the tricritical Ising model. We first construct a class of simple smooth modules induced from simple modules over finite-dimensional solvable Lie superalgebras. Furthermore, we provide several equivalent descriptions for simple smooth modules over the 2D supersymmetric Galilean conformal algebra. Additionally, examples of simple smooth modules such as the highest weight modules, Whittaker modules and high order Whittaker modules are presented.

Keywords

2D supersymmetric Galilean conformal algebra / smooth module / simple module

Cite this article

Download citation ▾
Zhenyuan Ni, Yun Gao, Jiancai Sun. Smooth Modules of the 2D Supersymmetric Galilean Conformal Algebra. Frontiers of Mathematics 1-33 DOI:10.1007/s11464-025-0042-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdamovićD, LamC, PedićV, YuN. On irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras. J. Algebra, 2019, 539: 1-23

[2]

AdamovićD, R, ZhaoK. Whittaker modules for the affine Lie algebra A1 (1). Adv. Math., 2016, 289: 438-479

[3]

AizawaN. Some properties of planar Galilean conformal algebras. Lie Theory and Its Applications in Physics, 2013 Tokyo Springer 301-309 36

[4]

ArnalD, PinczonG. On algebraically irreducible representations of the Lie algebra sl(2). J. Math. Phys., 1974, 15: 350-359

[5]

Bagchi A., Tensionless strings and Galilean conformal algebra. J. High Energy Phys., 2013, 2013 (5): Art. No. 141, i+18 pp.

[6]

Bagchi A., Gopakumar R., Galilean conformal algebras and AdS/CFT. J. High Energy Phys., 2009, 2009 (7): Paper No. 037, 22 pp.

[7]

Bagchi A., Gopakumar R., Mandal I., Miwa A., GCA in 2d. J. High Energy Phys., 2010, 2010 (8): Art. No. 004, i+39 pp.

[8]

Bagchi A., Mandal I., Supersymmetric extension of Galilean conformal algebras. Phys. Rev. D, 2009, 80 (8): Paper No. 086011, 10 pp.

[9]

BagciI, ChristodoulopoulouK, WiesnerE. Whittaker categories and Whittaker modules for Lie superalgebras. Comm. Algebra, 2014, 42(11): 4932-4947

[10]

ChenG, HanJ, SuY. Some modules over Lie algebras related to the Virasoro algebra. J. Math. Soc. Japan, 2020, 72(1): 61-72

[11]

ChenH. Simple restricted modules over the N = 1 Ramond algebra as weak modules for vertex operator superalgebras. J. Algebra, 2023, 621: 41-57

[12]

ChenH, HongY, SuY. A family of new simple modules over the Schrödinger–Virasoro algebra. J. Pure Appl. Algebra, 2018, 222(4): 900-913

[13]

Chen Y., Yao Y., Zhao K., Simple smooth modules over the Ramond algebra and applications to vertex operator superalgebras. 2024, arXiv:2406.06388

[14]

Futorny V., Guo X., Xue Y., Zhao K., Smooth representations of affine Kac–Moody algebras. 2024, arXiv:2404.03855

[15]

GaoD. Simple restricted modules for the Heisenberg–Virasoro algebra. J. Algebra, 2021, 574: 233-251

[16]

GaoD, GaoY. Representations of the planar Galilean conformal algebra. Comm. Math. Phys., 2022, 391(1): 199-221

[17]

HagenCR. Scale and conformal transformations in Galilean-covariant field theory. Phys. Rev. D, 1972, 5: 377-388

[18]

HenkelM. Schrödinger invariance and strongly anisotropic critical systems. J. Stat. Phys., 1994, 75: 1023-1061

[19]

KacV Infinite-dimensional Lie Algebras, 1990 Third Edition Cambridge Cambridge University Press

[20]

KacV. Lie superalgebras. Adv. Math., 1977, 26(1): 8-96

[21]

KazhdanD, LusztigG. Tensor structures arising from affine Lie algebras, I, II. J. Amer. Math. Soc., 1993, 6(4): 905-947 949–1011

[22]

Li J., Sun J., Representations of the BMS-Kac–Moody algebra. J. Geom. Phys., 2023, 191: Paper No. 104915, 14 pp.

[23]

LiJ, SunJ. Smooth modules of the super W \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\cal{W}$$\end{document}-algebra S W ( 3 2 , 3 2 ) \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\cal{S}}{\cal{W}}\left({3\over{2}},{3\over{2}}\right)$$\end{document} of Neveu–Schwarz type. J. Algebra, 2025, 661: 807-830

[24]

LiJ, SunJ, XuH. Lie super-bialgebra structures on the two dimensional supersymmetric Galilean conformal algebra. Comm. Algebra, 2023, 51(9): 3632-3670

[25]

Liu D., Pei Y., Xia L., Whittaker modules for the super-Virasoro algebras. J. Algebra Appl., 2019, 18 (11): Paper No. 1950211, 13 pp.

[26]

LiuD, PeiY, XiaL. Simple restricted modules for Neveu–Schwarz algebra. J. Algebra, 2020, 546: 341-356

[27]

Liu D., Pei Y., Xia L., Zhao K., Irreducible modules over the mirror Heisenberg–Virasoro algebra. Commun. Contemp. Math., 2022, 24 (4): Paper No. 2150026, 23 pp.

[28]

Liu D., Pei Y., Xia L., Zhao K., Simple smooth modules over the superconformal current algebra. 2023, arXiv:2305.16662

[29]

Liu D., Pei Y., Xia L., Zhao K., Smooth modules over the N = 1 Bondi–Metzner–Sachs superalgebra. Commun. Contemp. Math., 2025, 27 (4): Paper No. 2450021, 30 pp.

[30]

MaY, NguyennK, TantubayS, ZhaoK. Characterization of simple smooth modules. J. Algebra, 2023, 636: 1-19

[31]

Mandal I., Supersymmetric extension of GCA in 2d. J. High Energy Phys., 2010, 2010: Art. No. 18, i+27 pp.

[32]

MandalI, RayyanA. Super-GCA from N = ( 2 , 2 ) \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\cal{N}}=(2,2)$$\end{document} super-Virasoro. Phys. Lett. B, 2016, 754: 195-200

[33]

MazorchukV, ZhaoK. Characterization of simple highest weight modules. Canad. Math. Bull., 2013, 56(3): 606-614

[34]

MazorchukV, ZhaoK. Simple Virasoro modules which are locally finite over a positive part. Selecta Math. (N.S.), 2014, 20(3): 839-854

[35]

NguyenK, XueY, ZhaoK. A new class of simple smooth modules over the affine algebra A 1 (1). J. Algebra, 2024, 658: 728-747

[36]

NiedererU. The maximal kinematical invariance group of the free Schrödinger equation. Helv. Phys. Acta, 1972, 45(5): 802-810

[37]

Nishida Y., Son D.T., Nonrelativistic conformal field theories. Phys. Rev. D, 2007, 76 (8): Paper No. 086004, 14 pp.

[38]

OndrusM, WiesnerE. Whittaker modules for the Virasoro algebra. J. Algebra Appl., 2009, 8(3): 363-377

[39]

Sakaguchi M., Super-Galilean conformal algebra in AdS/CFT. J. Math. Phys., 2010, 51 (4): Paper No. 042301, 16 pp.

[40]

SuY. Classification of Harish-Chandra modules over the super-Virasoro algebras. Comm. Algebra, 1995, 23(10): 3653-3675

[41]

Tan H., Yao Y., Zhao K., Classification of simple smooth modules over the Heisenberg–Virasoro algebra. Proc. Roy. Soc. Edinburgh Sect. A, 2024, doi: https://doi.org/10.1017/prm.2024.132

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/