On Generalized Lc Pairs with b-log Abundant Nef Part (with an Appendix by J. Han)

Junpeng Jiao , Jihao Liu , Lingyao Xie

Frontiers of Mathematics ›› : 1 -31.

PDF
Frontiers of Mathematics ›› : 1 -31. DOI: 10.1007/s11464-025-0033-0
Research Article
research-article

On Generalized Lc Pairs with b-log Abundant Nef Part (with an Appendix by J. Han)

Author information +
History +
PDF

Abstract

We study the behavior of NQC generalized lc pairs with b-log abundant nef part. We show that this structure is preserved under the canonical bundle formula and sub-adjunction formulas, and is also compatible with the non-vanishing conjecture and the abundance conjecture in the classical minimal model program. As an application, we prove the non-vanishing theorem for rationally connected log canonical pairs, improving a result of Gongyo.

Keywords

Canonical bundle formula / moduli b-divisor / non-vanishing / 14E30 / 14C20 / 14E05 / 14J17

Cite this article

Download citation ▾
Junpeng Jiao, Jihao Liu, Lingyao Xie. On Generalized Lc Pairs with b-log Abundant Nef Part (with an Appendix by J. Han). Frontiers of Mathematics 1-31 DOI:10.1007/s11464-025-0033-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbramovichD, KaruK. Weak semistable reduction in characteristic 0. Invent. Math., 2000, 139(2): 241-273.

[2]

AmbroFThe Adjunction Conjecture and its applications, 1999

[3]

AmbroF. The moduli b-divisor of an lc-trivial fibration. Compos. Math., 2005, 141(2): 385-403.

[4]

BirkarC. Anti-pluricanonical systems on Fano varieties. Ann. of Math. (2), 2019, 190(2): 345-463.

[5]

BirkarC. Singularities of linear systems and boundedness of Fano varieties. Ann. of Math. (2), 2021, 193(2): 347-405.

[6]

BirkarCBoundedness and volume of generalised pairs, 2021

[7]

BirkarC. Generalised pairs in birational geometry. EMS Surv. Math. Sci., 2021, 8(12): 5-24.

[8]

BirkarC, CasciniP, HaconCD, McKernanJ. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc., 2010, 23(2): 405-468.

[9]

BirkarC, HuZ. Polarized pairs, log minimal models, and Zariski decompositions. Nagoya Math. J., 2014, 215: 203-224.

[10]

BirkarC, ZhangD-Q. Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs. Publ. Math. Inst. Hautes Études Sci., 2016, 123: 283-331.

[11]

ChenG. Boundedness of n-complements for generalized pairs. Eur. J. Math., 2023, 9433 pp..

[12]

ChenG, HanJ, LiuJ, XieLMinimal model program for algebraically integrable foliations and generalized pairs, 2023

[13]

ChoiS. The geography of log models and its applications. Ph.D. Thesis, 2008, Baltimore. Johns Hopkins University.

[14]

FilipazziS. Generalized pairs in birational geometry. Ph.D. Thesis, 2019, Salt Lake City. The University of Utah.

[15]

FilipazziS. On a generalized canonical bundle formula and generalized adjunction. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2020, 21: 1187-1221

[16]

FilipazziS, SvaldiR. On the connectedness principle and dual complexes for generalized pairs. Forum Math. Sigma, 2023, 1139 pp..

[17]

FlorisE, LazićV. On the B-Semiampleness Conjecture. Épijournal Géom. Algébrique, 2019, 326 pp.

[18]

FujinoO, GongyoY. On canonical bundle formulas and subadjunctions. Michigan Math. J., 2012, 61(2): 255-264.

[19]

FujinoO, GongyoY. On the moduli b-divisors of lc-trivial fibrations. Ann. Inst. Fourier (Grenoble), 2014, 64(4): 1721-1735.

[20]

Gongyo Y., Remarks on the non-vanishing conjecture. Adv. Stud. Pure Math., 65, 2015

[21]

HaconCD, HanJ. On a connectedness principle of Shokurov-Kollár type. Sci. China Math., 2019, 62(3): 411-416.

[22]

HaconCD, LiuJ. Existence of flips for generalized lc pairs. Camb. J. Math., 2023, 11(4): 795-828.

[23]

HanJ, LiZ. Weak Zariski decompositions and log terminal models for generalized pairs. Math. Z., 2022, 302(2): 707-741.

[24]

HanJ, LiuJ, ShokurovVV. ACC for minimal log discrepancies of exceptional singularities. Peking Math. J., 2024

[25]

HanJ, LiuW. On numerical nonvanishing for generalized log canonical pairs. Doc. Math., 2020, 25: 93-123.

[26]

HanJ, LiuW. On a generalized canonical bundle formula for generically finite morphisms. Ann. Inst. Fourier (Grenoble), 2021, 71(5): 2047-2077.

[27]

HashizumeK. Non-vanishing theorem for generalized log canonical pairs with a polarization. Selecta Math. (N.S.), 2022, 28438 pp..

[28]

HashizumeK, HuZ. On minimal model theory for log abundant lc pairs. J. Reine Angew. Math., 2020, 767: 109-159.

[29]

HuZLog abundance of the moduli b-divisor for lc-trivial fibrations, 2020

[30]

KawamataY. Subadjunction of log canonical divisors, II. Amer. J. Math., 1998, 120(5): 893-899.

[31]

KeelS, MatsukiK, McKernanJ. Log abundance theorem for threefolds. Duke Math. J., 1994, 75(1): 99-119.

[32]

KodairaK. On compact analytic surfaces, II, III. Ann. of Math. (2), 1963, 77: 563-626.

[33]

KollárJ, MoriS. Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, 134, 1998, Cambridge. Cambridge University Press.

[34]

LazićV, PeternellT. On generalised abundance, I. Publ. Res. Inst. Math. Sci., 2020, 56(2): 353-389.

[35]

LiuJ, XieL. Semi-ampleness of NQC generalized log canonical pairs. Adv. Math., 2023, 42735 pp..

[36]

LiuJ, XieL. Relative Nakayama-Zariski decomposition and minimal models of generalized pairs. Peking Math. J., 2025, 8(2): 299-349.

[37]

NakayamaN. Zariski-decomposition and abundance. MSJ Memoirs, 14, 2004, Tokyo. Mathematical Society of Japan.

[38]

ProkhorovYuG, ShokurovVV. Towards the second main theorem on complements. J. Algebraic Geom., 2009, 18(1): 151-199.

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

51

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/