The Boundedness of the Dilated Averages over the Parabola

Junfeng Li , Ankang Yu

Frontiers of Mathematics ›› : 1 -22.

PDF
Frontiers of Mathematics ›› : 1 -22. DOI: 10.1007/s11464-025-0032-1
Research Article
research-article

The Boundedness of the Dilated Averages over the Parabola

Author information +
History +
PDF

Abstract

This paper investigates the variation bounds and mixed norm bounds for the dilated averages operator. The established bounds are shown to be sharp, except for certain endpoint cases.

Keywords

dilated averages operator / parabola / variation / mixed norm / 42B20 / 42B25

Cite this article

Download citation ▾
Junfeng Li, Ankang Yu. The Boundedness of the Dilated Averages over the Parabola. Frontiers of Mathematics 1-22 DOI:10.1007/s11464-025-0032-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beltran D., Duncan J., Hickman J., Off-diagonal estimates for the helical maximal function. Proc. Lond. Math. Soc. (3), 2024, 128(4): Paper No. e12594, 36 pp.

[2]

BeltranD, GuoS, HickmanJ, SeegerA. Sharp Lp bounds for the helical maximal function. Amer. J. Math., 2025, 147(1): 149-234

[3]

BeltranD, OberlinR, RoncalL, SeegerA, StovallB. Variation bounds for spherical averages. Math. Ann., 2022, 382(1–2): 459-512

[4]

BourgainJ. Averages in the plane over convex curves and maximal operators. J. Analyse Math., 1986, 47: 69-85

[5]

BourgainJ. Pointwise ergodic theorems for arithmetic sets. Inst. Hautes Etudes Sci. Publ. Math., 1989, 69: 5-45

[6]

GuoS, RoosJ, YungP. Sharp variation-norm estimates for oscillatory integrals related to Carleson’s theorem. Anal. PDE, 2020, 13(5): 1457-1500

[7]

GuthL, WangH, ZhangR. A sharp square function estimate for the cone in ℝ3. Ann. of Math. (2), 2020, 192(2): 551-581

[8]

HickmanJ. Uniform LxpLx,rq improving for dilated averages over polynomial curves. J. Funct. Anal., 2016, 270(2): 560-608

[9]

HörmanderL. Estimates for translation invariant operators in Lp spaces. Acta Math., 1960, 104: 93-140

[10]

JonesR, SeegerA, WrightJ. Strong variational and jump inequalities in harmonic analysis. Trans. Amer. Math. Soc., 2008, 360(12): 6711-6742

[11]

KoH, LeeS, OhS. Maximal estimates for averages over space curves. Invent. Math., 2022, 228(2): 991-1035

[12]

Ko H., Lee S., Oh S., Sharp smoothing properties of averages over curves. Forum Math. Pi, 2023, 11: Paper No. e4, 33 pp.

[13]

LeeS. Endpoint estimates for the circular maximal function. Proc. Amer. Math. Soc., 2023, 131(5): 1433-1442

[14]

Mirek M., Stein E.M., Zorin-Kranich P., Jump inequalities for translation-invariant operators of Radon type on ℝd. Adv. Math., 2020, 365: Paper No. 107065, 57 pp.

[15]

MockenhauptG, SeegerA, SoggeCD. Wave front sets, local smoothing and Bourgain’s circular maximal theorem. Ann. of Math. (2), 1992, 136(1): 207-218

[16]

OberlinR, SeegerA, TaoT, ThieleC, WrightJ. A variation norm Carleson theorem. J. Eur. Math. Soc. (JEMS), 2012, 14(2): 421-464

[17]

SchlagW. A generalization of Bourgains circular maximal theorem. J. Amer. Math. Soc., 1997, 10(1): 103-122

[18]

SchlagW, SoggeCD. Local smoothing estimates related to the circular maximal theorem. Math. Res. Lett., 1997, 4(1): 1-15

[19]

SoggeCD. Propagation of singularities and maximal functions in the plane. Invent. Math., 1991, 104(2): 349-376

[20]

SteinEM. Maximal functions, I. Spherical means. Proc. Nat. Acad. Sci. U.S.A., 1976, 73(7): 2174-2175

[21]

SteinEMHarmonic Analysis—Real-variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton, NJ. Princeton University Press. 43

[22]

StrichartzRS. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 1977, 44(3): 705-714

[23]

TriebelHTheory of Function Spaces, 1983, Basel. Birkhäuser Verlag. 78

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

24

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/