Weighted Versions of Saitoh’s Conjecture in Fibration Cases

Qi’an Guan , Gan Li , Zheng Yuan

Frontiers of Mathematics ›› : 1 -58.

PDF
Frontiers of Mathematics ›› :1 -58. DOI: 10.1007/s11464-025-0030-3
Research Article
research-article

Weighted Versions of Saitoh’s Conjecture in Fibration Cases

Author information +
History +
PDF

Abstract

In this article, we introduce some generalized Hardy spaces on fibrations of planar domains and fibrations of products of planar domains. We consider the kernel functions on these spaces, and we prove some weighted versions of Saitoh’s conjecture in fibration cases.

Keywords

Bergman kernel / Hardy space / Saitoh’s conjecture / fibration / 32A10 / 32A25 / 32A35 / 30H10

Cite this article

Download citation ▾
Qi’an Guan, Gan Li, Zheng Yuan. Weighted Versions of Saitoh’s Conjecture in Fibration Cases. Frontiers of Mathematics 1-58 DOI:10.1007/s11464-025-0030-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bao SJ. L2 extension and effectiveness of strong openness property, 2022, Beijing, Peking University

[2]

Bao SJ, Guan QA, Mi ZT, Yuan Z. Concavity property of minimal L2 integrals with Lebesgue measurable gain VII-Negligible weights. The Bergman Kernel and Related Topics, Springer Proc. Math. Stat., 2024, Singapore, Springer1103447

[3]

Bao SJ, Guan QA, Yuan Z. Concavity property of minimal L2 integrals with Lebesgue measurable gain VI: fibrations over products of open Riemann surfaces. Sci. China Math., 2025

[4]

Bao S.J., Guan Q.A., Yuan Z., Concavity property of minimal L2 integrals with Lebesgue measurable gain V—fibrations over open Riemann surfaces. J. Geom. Anal., 2023, 33(6): Paper No. 179, 73 pp.

[5]

Błocki Z. On the Ohsawa–Takegoshi extension theorem. Univ. Iagellonicae Acta Math., 2012, 50: 53-61

[6]

Błocki Z. Suita conjecture and the Ohsawa–Takegoshi extension theorem. Invent Math., 2013, 193(1): 149-158

[7]

Demailly J-P. Analytic Methods in Algebraic Geometry, 2010, Beijing, Higher Education Press1

[8]

Duren PL. Theory of Hp Spaces, 1970, New York-London, Academic Press38

[9]

Forster O. Lectures on Riemann Surfaces, 1981, New York–Berlin, Springer-Verlag 81

[10]

Guan QA. A sharp effectiveness result of Demailly’s strong openness conjecture. Adv. Math., 2019, 348: 51-80

[11]

Guan QA. A proof of Saitoh’s conjecture for conjugate Hardy H2 kernels. J. Math. Soc. Japan, 2019, 71(4): 1173-1179

[12]

Guan QA. Decreasing equisingular approximations with analytic singularities. J. Geom. Anal., 2020, 30(1): 484-492

[13]

Guan QA, Mi ZT. Concavity of minimal L2 integrals related to multiplier ideal sheaves. Peking Math. J., 2023, 6(2): 393-457

[14]

Guan QA, Mi ZT, Yuan Z. Boundary points, minimal L2 integrals and concavity property III—Linearity on Riemann surfaces and fibrations over open Riemann surfaces. Acta Math. Sin. (Engl. Ser.), 2024, 40(9): 2091-2152

[15]

Guan Q.A., Mi Z.T., Yuan Z., Concavity property of minimal L2 integrals with Lebesgue measurable gain II. Adv. Math., 2024, 450: Paper No. 109766, 61 pp.

[16]

Guan Q.A., Yuan Z., Hardy space, kernel function and Saitoh’s conjecture on products of planar domains. 2022, arXiv:2210.14579

[17]

Guan QA, Yuan Z. Concavity property of minimal L2 integrals with Lebesgue measurable gain. Nagoya Math. J., 2023, 252: 842-905

[18]

Guan QA, Yuan Z. A weighted version of Saitoh’s conjecture. Publ. Res. Inst. Math. Sci., 2024, 60(3): 539-559

[19]

Guan QA, Yuan Z. Concavity property of minimal L2 integrals with Lebesgue measurable gain IV: product of open Riemann surfaces. Peking Math. J., 2024, 7(1): 91-154

[20]

Guan QA, Zhou XY. Optimal constant problem in the L2 extension theorem. C. R. Math. Acad. Sci. Paris, 2012, 350(15–16): 753-756

[21]

Guan QA, Zhou XY. A solution of an L2 extension problem with an optimal estimate and applications. Ann. of Math. (2), 2015, 181(3): 1139-1208

[22]

Guan QA, Zhou XY. Optimal constant in an L2 extension problem and a proof of a conjecture of Ohsawa. Sci. China Math., 2015, 58(1): 35-59

[23]

Guan QA, Zhou XY, Zhu LF. On the Ohsawa–Takegoshi L2 extension theorem and the twisted Bochner–Kodaira identity. C. R. Math. Acad. Sci. Paris, 2011, 349(13–14): 797-800

[24]

Li Z., Xu W., Zhou X.Y., On Demailly’s L2 extension theorem from non-reduced subvarieties. Math. Z., 2023, 305(2): Paper No. 23, 22 pp.

[25]

Nehari Z. A class of domain functions and some allied extremal problems. Trans. Amer. Math. Soc., 1950, 69: 161-178

[26]

Ohsawa T. Addendum to: “On the Bergman kernel of hyperconvex domains”. Nagoya Math. J., 1995, 137: 145-148

[27]

Ohsawa T, Takegoshi K. On the extension of L2 holomorphic functions. Math. Z., 1987, 195(2): 197-204

[28]

Pasternak-Winiarski Z. On weights which admit the reproducing kernel of Bergman type. Internat. J. Math. Math. Sci., 1992, 15(1): 1-14

[29]

Rudin W. Real and Complex Analysis, 1987Third EditionNew York, McGraw-Hill Book Co.

[30]

Rudin W. Analytic functions of class Hp. Trans. Amer. Math. Soc., 1955, 78: 46-66

[31]

Saitoh S. Theory of Reproducing Kernels and Its Applications, 1988, Harlow, Longman Scientific & Technical189

[32]

Sario L, Oikawa K. Capacity Functions, 1969, New York, Springer-Verlag New York, Inc. 149

[33]

Suita N. Capacities and kernels on Riemann surfaces. Arch. Rational Mech. Anal., 1972, 46: 212-217

[34]

Xu W, Zhou XY. Optimal L2 extension of openness type. Math. Ann., 2024, 390(1): 1249-1307

[35]

Yamada A. Topics related to reproducing kernels, theta functions and the Suita conjecture. Sūrikaisekikenkyūsho Kōkyūroku, 1998, 1067: 39-47

[36]

Zhu LF, Guan QA, Zhou XY. On the Ohsawa–Takegoshi L2 extension theorem and the Bochner–Kodaira identity with non-smooth twist factor. J. Math. Pures Appl. (9), 2012, 97(6): 579-601

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/