Hardy Constants on Wedged Domains

Yongyang Jin , Shoufeng Shen , Li Tang

Frontiers of Mathematics ›› : 1 -16.

PDF
Frontiers of Mathematics ›› :1 -16. DOI: 10.1007/s11464-025-0027-y
Research Article

Hardy Constants on Wedged Domains

Author information +
History +
PDF

Abstract

The Hardy constant for a domain Ω ⊂ ℝn is defined as the best constant for the Hardy inequality

Ωu2dxCΩu2x2dx,uC0(Ω).

In this paper we determine the Hardy constants for wedged domains. In particular we show the dependence of Hardy constant on n and the angle φ of wedged domain. Our results also reflect the influence of boundary smoothness and location of singular point on Hardy constant. Some improved Hardy inequalities on special wedged domains are also obtained.

Keywords

Hardy constant / wedged domain / improved Hardy inequality

Cite this article

Download citation ▾
Yongyang Jin, Shoufeng Shen, Li Tang. Hardy Constants on Wedged Domains. Frontiers of Mathematics 1-16 DOI:10.1007/s11464-025-0027-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BalinskyA, EvansWD. Some recent results on Hardy-type inequalities. Appl. Math. Inf. Sci., 2020, 4(2): 191-208

[2]

BarbatisG, FilippasS, TertikasA. A unified approach to improved Lp Hardy inequalities with best constants. Trans. Amer. Math. Soc., 2004, 356(6): 2169-2196

[3]

BrezisH, VázquezJL. Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid, 1997, 10(2): 443-469

[4]

CazacuC. The method of super-solutions in Hardy and Rellich type inequalities in the L2 setting: an overview of well-known results and short proofs. Rev. Roumaine Math. Pures Appl., 2021, 66(3–4): 617-638

[5]

CianchiA, FeroneA. Hardy inequalities with non-standard remainder terms. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 2008, 25(5): 889-906

[6]

DaviesEB. The Hardy constant. Quart. J. Math. Oxford Ser. (2), 1995, 46(184): 417-431

[7]

DevyverB, PinchoverY. Optimal Lp Hardy-type inequalities. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 2016, 33(1): 93-118

[8]

DimitrovDK, GadjevI, IsmailMEH. Sharp Hardy’s inequalities in Hilbert spaces. J. Spectr. Theory, 2024, 14(3): 1243-1256

[9]

DuyckaertsT. A singular critical potential for the Schrödinger operator. Canad. Math. Bull., 2007, 50(1): 35-47

[10]

Fall M.M., On the Hardy–Poincaré inequality with boundary singularities. Commun. Contemp. Math., 2012, 14 (3): Paper No. 1250019, 13 pp.

[11]

FilippasS, TertikasA, TidblomJ. On the structure of Hardy–Sobolev–Maz’ya inequalities. J. Eur. Math. Soc. (JEMS), 2009, 11(6): 1165-1185

[12]

Gadjev I., On the constants and extremal function and sequence for Hardy inequalities in Lp and lp. 2023, arXiv:2310.00281

[13]

GesztesyF, PangMMHOptimal power-weighted Birman–Hardy–Rellich-type inequalities on finite intervals and annuli, 2025

[14]

GoldsteinJ, KombeI, YenerA. A unified approach to weighted Hardy type inequalities on Carnot groups. Discrete Contin. Dyn. Syst., 2017, 37(4): 2009-2021

[15]

JinYY, TangL, FanY, YuN. Sharp Caffarelli–Kohn–Nirenberg and Hardy–Rellich inequalities for partially antisymmetric functions. Proc. Amer. Math. Soc., 2025, 193(1): 193-205

[16]

JinYY, ZhangGK. Degenerate p-Laplacian operators and Hardy type inequalities on H-type groups. Canad. J. Math., 2010, 62(5): 1116-1130

[17]

LerayJ. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 1934, 63(1): 193-248

[18]

Maz’yaVGSobolev Spaces, 1985, Berlin, Springer-Verlag

[19]

MironescuP. The role of the Hardy type inequalities in the theory of function spaces. Rev. Roumaine Math. Pures Appl., 2018, 63(4): 447-525

[20]

PinchoverY, TintarevK. Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy’s inequality. Indiana Univ. Math. J., 2005, 54(4): 1061-1074

[21]

TertikasA. Critical phenomena in linear elliptic problems. J. Funct. Anal., 1998, 154(1): 42-66

[22]

VazquezJL, ZuazuaE. The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal., 2000, 173(1): 103-153

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/