A Miyaoka-Yau Type Inequality for Threefolds with Nef Anti-canonical Divisors in Positive Characteristic

Miaomiao Mu

Frontiers of Mathematics ›› : 1 -13.

PDF
Frontiers of Mathematics ›› :1 -13. DOI: 10.1007/s11464-025-0025-0
Research Article
research-article

A Miyaoka-Yau Type Inequality for Threefolds with Nef Anti-canonical Divisors in Positive Characteristic

Author information +
History +
PDF

Abstract

We prove a Miyaoka–Yau type inequality for threefolds such that −KX is nef and of numerical dimension ≥ 2

A(c2(X)+λc12(X))>0,
where A is an ample line bundle and λ > 0 is a constant dependent on the characteristic p and the Cartier index n0 of KX. This is an analogue of the Miyaoka–Yau type inequality presented in [Algebra Number Theory, 2022, 16(10): 2339–2384], which treats minimal threefolds of general type. We attain this inequality by following the strategy of [Algebra Number Theory, 2022, 16(10): 2339–2384, Duke Math. J., 2019, 168(7): 1269–1301]. Applying a similar argument, we also show that in characteristic ≥ 5, if −KX is nef and −KX · c2(X) < 0, then the nonvanishing theorem for anti-canonical divisor holds.

Keywords

Miyaoka–Yau inequality / threefold / positive characteristic / 14C17 / 14E99 / 14F99

Cite this article

Download citation ▾
Miaomiao Mu. A Miyaoka-Yau Type Inequality for Threefolds with Nef Anti-canonical Divisors in Positive Characteristic. Frontiers of Mathematics 1-13 DOI:10.1007/s11464-025-0025-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bauer T, Campana F, Eckl T, Kebekus S, Peternell T, Rams S, Szemberg T, Wotzlaw L. A Reduction Map for Nef Line Bundles, 2002, Berlin, Springer

[2]

Birkar C, Waldron J. Existence of Mori fibre spaces for 3-folds in char p. Adv. Math., 2017, 313: 62-101

[3]

Cascini P, Tanaka H, Xu C. On base point freeness in positive characteristic. Ann. Sci. Éc. Norm. Supér. (4), 2015, 48(5): 1239-1272

[4]

Ekedahl T. Foliations and Inseparable Morphisms, 1987, Providence, RI, Amer. Math. Soc.Part 246

[5]

Ekedahl T. Canonical models of surfaces of general type in positive characteristic. Inst. Hautes Études Sci. Publ. Math., 1988, 67: 97-144

[6]

Gu Y, Sun X, Zhou M. Slope inequalities and a Miyaoka–Yau type inequality. J. Eur. Math. Soc. (JEMS), 2023, 25(2): 611-632

[7]

Hartshorne R. Algebraic Geometry, 1977, New York-Heidelberg, Springer-Verlag 52

[8]

Huybrechts D, Lehn M. The Geometry of Moduli Spaces of Sheaves, 2010Second EditionCambridge, Cambridge University Press

[9]

Iwai M, Jiang C, Liu H. Miyaoka-type inequalities for terminal threefolds with nef anti-canonical divisors. Sci. China Math., 2025, 68(1): 1-18

[10]

Katz NM. Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math., 1970, 39: 175-232

[11]

Kawamata Y. Boundedness of Q-Fano threefolds, 1992, Providence, RI, Amer. Math. Soc.Part 3131

[12]

Keeler DS. Fujita’s conjecture and Frobenius amplitude. Amer. J. Math., 2008, 130(5): 1327-1336

[13]

Langer A. Semistable sheaves in positive characteristic. Ann. of Math. (2), 2004, 159(1): 251-276

[14]

Langer A. Generic positivity and foliations in positive characteristic. Adv. Math., 2015, 277: 1-23

[15]

Liu H, Liu J. Kawamata–Miyaoka type inequality for ℚ-Fano varieties with canonical singularities. J. Reine Angew. Math., 2025, 819: 265-281

[16]

Liu H., Liu J., Kawamata–Miyaoka-type inequality for ℚ-Fano varieties with canonical singularities II: terminal ℚ-Fano threefolds. Épijournal Géom. Algébrique, 2025, 9: Art. 12, 21 pp.

[17]

Mehta VB, Ramanathan A. Homogeneous Bundles in Characteristic p, 1983, Berlin, Springer997

[18]

Miyaoka Y. On the Chern numbers of surfaces of general type. Invent. Math., 1977, 42: 225-237

[19]

Miyaoka Y. The Chern Classes and Kodaira Dimension of a Minimal Variety, 1987, Amsterdam, North-Holland10

[20]

Mukai S. Counterexamples to Kodaira’s vanishing and Yau’s inequality in positive characteristics. Kyoto J. Math., 2013, 53(2): 515-532

[21]

Ou W., On generic nefness of tangent sheaves. Math. Z., 2023, 304(4): Paper No. 58, 23pp.

[22]

Patakfalvi Z, Waldron J. Singularities of general fibers and the LMMP. Amer. J. Math., 2022, 144(2): 505-540

[23]

Raynaud M. Contre-exemple au “vanishing theorem” en caractéristique p > 0. C. P. Ramanujam—a tribute, 1978, Berlin–New York, Springer2732788

[24]

Shepherd-Barron NI. Fano threefolds in positive characteristic. Compositio Math., 1997, 105(3): 237-265

[25]

Tanaka H. Abundance theorem for surfaces over imperfect fields. Math. Z., 2020, 195(1–2): 595-622

[26]

Tate J. Genus change in inseparable extensions of function fields. Proc. Amer. Math. Soc., 1952, 3: 400-406

[27]

Xu C, Zhang L. Nonvanishing for 3-folds in characteristic p > 5. Duke Math. J., 2019, 168(7): 1269-1301

[28]

Zhang L. Abundance for 3-folds with non-trivial Albanese maps in positive characteristic. J. Eur. Math. Soc. (JEMS), 2020, 22(9): 2777-2820

[29]

Zhang L. Frobenius stable pluricanonical systems on threefolds of general type in positive characteristic. Algebra Number Theory, 2022, 16(10): 2339-2384

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/