PDF
Abstract
We prove a Miyaoka–Yau type inequality for threefolds such that −KX is nef and of numerical dimension ≥ 2
where
A is an ample line bundle and
λ > 0 is a constant dependent on the characteristic
p and the Cartier index
n0 of
KX. This is an analogue of the Miyaoka–Yau type inequality presented in [Algebra Number Theory, 2022, 16(10): 2339–2384], which treats minimal threefolds of general type. We attain this inequality by following the strategy of [Algebra Number Theory, 2022, 16(10): 2339–2384, Duke Math. J., 2019, 168(7): 1269–1301]. Applying a similar argument, we also show that in characteristic ≥ 5, if −
KX is nef and −
KX ·
c2(
X) < 0, then the nonvanishing theorem for anti-canonical divisor holds.
Keywords
Miyaoka–Yau inequality
/
threefold
/
positive characteristic
/
14C17
/
14E99
/
14F99
Cite this article
Download citation ▾
Miaomiao Mu.
A Miyaoka-Yau Type Inequality for Threefolds with Nef Anti-canonical Divisors in Positive Characteristic.
Frontiers of Mathematics 1-13 DOI:10.1007/s11464-025-0025-0
| [1] |
Bauer T, Campana F, Eckl T, Kebekus S, Peternell T, Rams S, Szemberg T, Wotzlaw L. A Reduction Map for Nef Line Bundles, 2002, Berlin, Springer
|
| [2] |
Birkar C, Waldron J. Existence of Mori fibre spaces for 3-folds in char p. Adv. Math., 2017, 313: 62-101
|
| [3] |
Cascini P, Tanaka H, Xu C. On base point freeness in positive characteristic. Ann. Sci. Éc. Norm. Supér. (4), 2015, 48(5): 1239-1272
|
| [4] |
Ekedahl T. Foliations and Inseparable Morphisms, 1987, Providence, RI, Amer. Math. Soc.Part 246
|
| [5] |
Ekedahl T. Canonical models of surfaces of general type in positive characteristic. Inst. Hautes Études Sci. Publ. Math., 1988, 67: 97-144
|
| [6] |
Gu Y, Sun X, Zhou M. Slope inequalities and a Miyaoka–Yau type inequality. J. Eur. Math. Soc. (JEMS), 2023, 25(2): 611-632
|
| [7] |
Hartshorne R. Algebraic Geometry, 1977, New York-Heidelberg, Springer-Verlag 52
|
| [8] |
Huybrechts D, Lehn M. The Geometry of Moduli Spaces of Sheaves, 2010Second EditionCambridge, Cambridge University Press
|
| [9] |
Iwai M, Jiang C, Liu H. Miyaoka-type inequalities for terminal threefolds with nef anti-canonical divisors. Sci. China Math., 2025, 68(1): 1-18
|
| [10] |
Katz NM. Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math., 1970, 39: 175-232
|
| [11] |
Kawamata Y. Boundedness of Q-Fano threefolds, 1992, Providence, RI, Amer. Math. Soc.Part 3131
|
| [12] |
Keeler DS. Fujita’s conjecture and Frobenius amplitude. Amer. J. Math., 2008, 130(5): 1327-1336
|
| [13] |
Langer A. Semistable sheaves in positive characteristic. Ann. of Math. (2), 2004, 159(1): 251-276
|
| [14] |
Langer A. Generic positivity and foliations in positive characteristic. Adv. Math., 2015, 277: 1-23
|
| [15] |
Liu H, Liu J. Kawamata–Miyaoka type inequality for ℚ-Fano varieties with canonical singularities. J. Reine Angew. Math., 2025, 819: 265-281
|
| [16] |
Liu H., Liu J., Kawamata–Miyaoka-type inequality for ℚ-Fano varieties with canonical singularities II: terminal ℚ-Fano threefolds. Épijournal Géom. Algébrique, 2025, 9: Art. 12, 21 pp.
|
| [17] |
Mehta VB, Ramanathan A. Homogeneous Bundles in Characteristic p, 1983, Berlin, Springer997
|
| [18] |
Miyaoka Y. On the Chern numbers of surfaces of general type. Invent. Math., 1977, 42: 225-237
|
| [19] |
Miyaoka Y. The Chern Classes and Kodaira Dimension of a Minimal Variety, 1987, Amsterdam, North-Holland10
|
| [20] |
Mukai S. Counterexamples to Kodaira’s vanishing and Yau’s inequality in positive characteristics. Kyoto J. Math., 2013, 53(2): 515-532
|
| [21] |
Ou W., On generic nefness of tangent sheaves. Math. Z., 2023, 304(4): Paper No. 58, 23pp.
|
| [22] |
Patakfalvi Z, Waldron J. Singularities of general fibers and the LMMP. Amer. J. Math., 2022, 144(2): 505-540
|
| [23] |
Raynaud M. Contre-exemple au “vanishing theorem” en caractéristique p > 0. C. P. Ramanujam—a tribute, 1978, Berlin–New York, Springer2732788
|
| [24] |
Shepherd-Barron NI. Fano threefolds in positive characteristic. Compositio Math., 1997, 105(3): 237-265
|
| [25] |
Tanaka H. Abundance theorem for surfaces over imperfect fields. Math. Z., 2020, 195(1–2): 595-622
|
| [26] |
Tate J. Genus change in inseparable extensions of function fields. Proc. Amer. Math. Soc., 1952, 3: 400-406
|
| [27] |
Xu C, Zhang L. Nonvanishing for 3-folds in characteristic p > 5. Duke Math. J., 2019, 168(7): 1269-1301
|
| [28] |
Zhang L. Abundance for 3-folds with non-trivial Albanese maps in positive characteristic. J. Eur. Math. Soc. (JEMS), 2020, 22(9): 2777-2820
|
| [29] |
Zhang L. Frobenius stable pluricanonical systems on threefolds of general type in positive characteristic. Algebra Number Theory, 2022, 16(10): 2339-2384
|
RIGHTS & PERMISSIONS
Peking University