On the Higher Power Moments of the Riesz Mean Error Term for the Rankin–Selberg Problem

Jing Huang , Yoshio Tanigawa , Wenguang Zhai , Deyu Zhang

Frontiers of Mathematics ›› : 1 -22.

PDF
Frontiers of Mathematics ›› :1 -22. DOI: 10.1007/s11464-025-0009-0
Research Article
research-article

On the Higher Power Moments of the Riesz Mean Error Term for the Rankin–Selberg Problem

Author information +
History +
PDF

Abstract

Let Δ1 (x; φ) denote the Riesz mean error term in the classical Rankin–Selberg problem. In this paper, we study the higher power moments of Δ1 (x; φ) and derive asymptotic formulas for 4-th and 5-th power moments.

Keywords

The Rankin–Selberg problem / power moment / Voronoi formula / 11N37

Cite this article

Download citation ▾
Jing Huang, Yoshio Tanigawa, Wenguang Zhai, Deyu Zhang. On the Higher Power Moments of the Riesz Mean Error Term for the Rankin–Selberg Problem. Frontiers of Mathematics 1-22 DOI:10.1007/s11464-025-0009-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DeligneP. La conjecture de Weil, I. Inst. Hautes Études Sci. Publ. Math., 1974, 1974(43): 273-307(in French)

[2]

HuangB. On the Rankin–Selberg problem. Math. Ann., 2021, 381(3–4): 1217-1251

[3]

Huang J., Tanigawa Y., Zhai W.G., Zhang D.Y., On higher moments of the error term in the Rankin–Selberg problem. 2025, arXiv:2504.18862

[4]

IvićA. Large values of certain number-theoretic error terms. Acta Arith., 1990, 56(2): 135-159

[5]

IvićA. Estimates of convolutions of certain number-theoretic error terms. Int. J. Math. Math. Sci., 2004, 2004(1–4): 1-23

[6]

IvićA. On some mean square estimates in the Rankin–Selberg problem. Appl. Anal. Discrete Math., 2007, 1(1): 111-121

[7]

IvićA. On the fourth moment in the Rankin–Selberg problem. Arch. Math. (Basel), 2008, 90(5): 412-419

[8]

IvićA. On the Rankin–Selberg zeta function. J. Aust. Math. Soc., 2012, 93(1–2): 101-113

[9]

IvićA. On the Rankin–Selberg problem in short intervals. Mosc. J. Comb. Number Theory, 2012, 2(3): 3-17

[10]

IvićA, MatsumotoK, TanigawaY. On Riesz means of the coefficients of the Rankin–Selberg series. Math. Proc. Cambridge Philos. Soc., 1999, 127(1): 117-131

[11]

LiJ. On the seventh power moment of Δ1(x; φ). Int. J. Number Theory, 2017, 13(3): 571-591

[12]

LiuD. On the fifth-power moment of Δ(1)(x). J. Number Theory, 2024, 262: 371-385

[13]

LiuD, SuiY. On higher-power moments of Δ(1)(x). Acta Math. Hungar., 2022, 162(2): 445-464

[14]

LiuK, WangH. Higher power moments of the Riesz mean error term of symmetric square L-function. J. Number Theory, 2011, 131(12): 2247-2261

[15]

MatsumotoK. The mean values and the universality of Rankin–Selberg L-functions. Number Theory (Turku, 1999), 2001, Berlin. Walter de Gruyter & Co.. 201221

[16]

RankinRA. Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions, II. The order of the Fourier coefficients of integral modular forms. Proc. Cambridge Philos. Soc., 1939, 35(3): 357-372

[17]

RobertO, SargosP. Three-dimensional exponential sums with monomial. J. Reine Angew. Math., 2006, 591: 1-20

[18]

SelbergA. Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid., 1940, 43: 47-50

[19]

TanigawaY, ZhaiWG, ZhangDY. On the Rankin–Selberg problem: higher power moments of the Riesz mean error term. Sci. China Ser. A, 2008, 51(1): 148-160

[20]

TolevDI. On a diophantine inequality involving prime numbers. Acta Arith., 1992, 61(3): 289-306

[21]

ZhaiWG. On higher-power moments of Δ1(x), II. Acta Arith., 2004, 114(1): 35-54

[22]

ZhangDY, ZhaiWG. On the fifth-power moment of Δ1(x). Int. J. Number Theory, 2011, 7(1): 71-86

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

319

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/