Fractal Dimensions and Divergence of Fourier Series

Mengjie Che , Changhao Chen , Jia Liu

Frontiers of Mathematics ›› : 1 -8.

PDF
Frontiers of Mathematics ›› : 1 -8. DOI: 10.1007/s11464-025-0008-1
Research Article
research-article

Fractal Dimensions and Divergence of Fourier Series

Author information +
History +
PDF

Abstract

We show that for any 1 ≤ s ≤ 2, there is a periodic continuous function f whose Fourier series is divergent at some point, and whose graph satisfies

$\text{dim}_{H}(\text{graph} \ f)=\text{dim}_{B}(\text{graph} \ f)=s.$

Keywords

Fractal dimensions / Fourier series / 28A80

Cite this article

Download citation ▾
Mengjie Che, Changhao Chen, Jia Liu. Fractal Dimensions and Divergence of Fourier Series. Frontiers of Mathematics 1-8 DOI:10.1007/s11464-025-0008-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BarańskiK. On the dimension of graphs of Weierstrass-type functions with rapidly growing frequencies. Nonlinearity, 2012, 25(1): 193-209.

[2]

BaryNA Treatise on Trigonometric Series, Vols. I, II, 1964, New York. The Macmillan Company.

[3]

DuoandikoetxeaJFourier Analysis, 2001, Providence, RI. American Mathematical Society. 29

[4]

FalconerKFractal Geometry—Mathematical Foundations and Applications, 2003Second EditionHoboken, NJ. John Wiley & Sons. .

[5]

GrafakosLClassical Fourier Analysis, 2008Second EditionNew York. Springer. . 249

[6]

HumkePD, PetruskaG. The packing dimension of a typical continuous function is 2. Real Anal. Exchange, 1988, 14(2): 345-358. 89

[7]

HydeJ, LaschosV, OlsenL, PetrykiewiczI, ShawA. On the box dimensions of graphs of typical continuous functions. J. Math. Anal. Appl., 2012, 391(2): 567-581.

[8]

MattilaPFourier Analysis and Hausdorff Dimension, 2015, Cambridge. Cambridge University Press. . 150

[9]

SteinE, ShakarchiRFourier Analysis—An Introduction, 2003, Princeton, NJ. Princeton University Press. 1

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/