Weighted Combinatorial Calabi Flow on Surfaces

Xiaorui Yang , Hao Yu

Frontiers of Mathematics ›› : 1 -24.

PDF
Frontiers of Mathematics ›› : 1 -24. DOI: 10.1007/s11464-025-0004-5
Research Article

Weighted Combinatorial Calabi Flow on Surfaces

Author information +
History +
PDF

Abstract

Motivated by the work of Chow and Luo [J. Differential Geom., 2003, 63(1): 97–129], Ge and his collaborators ([Trans. Amer. Math. Soc., 2018, 370(2): 1377–1391], [Differential Geom. Appl., 2016, 47: 86–98], [Adv. Math., 2018, 333: 523–538]) introduced the combinatorial Calabi flow to study circle patterns in Euclidean and hyperbolic background geometries. Recently, Popelensky [Filomat, 2023, 37(25): 8675–8681] further developed a weighted combinatorial Ricci flow. Inspired by these contributions, we define a weighted combinatorial Calabi flow to investigate circle patterns. This paper addresses two cases: Euclidean and hyperbolic background geometries. In Euclidean background geometry, we prove that the flow exists for all time, and the flow converges if and only if a constant curvature circle pattern metric exists. Moreover, we establish that the prescribed flow converges if and only if the prescribed curvature is attainable. In hyperbolic background geometry, we prove that the flow exists for all time, and the flow converges if and only if a zero curvature circle pattern metric exists. Additionally, in hyperbolic background geometry, for a prescribed curvature, we show that the prescribed flow converges if and only if the curvature is attainable.

Keywords

Combinatorial Calabi flow / weighted flow / circle pattern / combinatorial curvature flow

Cite this article

Download citation ▾
Xiaorui Yang, Hao Yu. Weighted Combinatorial Calabi Flow on Surfaces. Frontiers of Mathematics 1-24 DOI:10.1007/s11464-025-0004-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AndreevEM. Convex polyhedra in Lobačevskiĭ spaces. Mat. Sb. (N.S.), 1970, 81(123): 445-478

[2]

AndreevEM. On convex polyhedra of finite volume in Lobačevskiĭ space. Math. USSR Sb., 1970, 12(2): 255-259

[3]

CalabiE. Extremal Kéhler metrics. Seminar on Differential Geometry, 1982, Princeton, NJ, Princeton Univ. Press: 259-290102

[4]

CalabiE. Extremal Kähler metrics, II. Differential Geometry and Complex Analysis, 1985, Berlin, Springer-Verlag: 95-114

[5]

ChenX, LuP, TianG. A note on uniformization of Riemann surfaces by Ricci flow. Proc. Amer. Math. Soc., 2006, 134(11): 3391-3393

[6]

ChowB, LuoF. Combinatorial Ricci flows on surfaces. J. Differential Geom., 2003, 63(1): 97-129

[7]

ChungFRKSpectral Graph Theory, 1997, Providence, RI, Amer. Math. Soc.92

[8]

FengK, GeH, HuaB. Combinatorial Ricci flows and the hyperbolization of a class of compact 3-manifolds. Geom. Topol., 2022, 26(3): 1349-1384

[9]

FengK, GeH, HuaB, XuX. Combinatorial Ricci flows with applications to the hyperbolization of cusped 3-manifolds. Int. Math. Res. Not. IMRN, 2022, 2022(20): 15549-15573

[10]

GeHCombinatorial methods and geometric equations, 2012, Beijing, Peking University

[11]

GeH. Combinatorial Calabi flows on surfaces. Trans. Amer. Math. Soc., 2018, 370(2): 1377-1391

[12]

GeH, HuaB. On combinatorial Calabi flow with hyperbolic circle patterns. Adv. Math., 2018, 333: 523-538

[13]

GeH, HuaB. 3-dimensional combinatorial Yamabe flow in hyperbolic background geometry. Trans. Amer. Math. Soc., 2020, 373(7): 5111-5140

[14]

Ge H., Hua B., Zhou P., A combinatorial curvature flow in spherical background geometry. J. Funct. Anal., 2024, 286(7): Paper No. 110335, 12 pp.

[15]

GeH, HuaB, ZhouZ. Circle patterns on surfaces of finite topological type. Amer. J. Math., 2021, 143(5): 1397-1430

[16]

Ge H., Hua B., Zhou Z., Combinatorial Ricci flows for ideal circle patterns. Adv. Math., 2021, 383: Paper No. 107698, 26 pp.

[17]

Ge H., Jiang W., On the deformation of discrete conformal factors on surfaces. Calc. Var. Partial Differ. Equ., 2016, 55(6): Art. 136, 14 pp.

[18]

GeH, JiangW. On the deformation of inversive distance circle packings, II. J. Funct. Anal., 2017, 272(9): 3573-3595

[19]

GeH, JiangW. On the deformation of inversive distance circle packings, III. J. Funct. Anal., 2017, 272(9): 3596-3609

[20]

GeH, JiangW. On the deformation of inversive distance circle packings, I. Trans. Amer. Math. Soc., 2019, 372(9): 6231-6261

[21]

Ge H., Jiang W., Shen L., On the deformation of ball packings. Adv. Math., 2022, 398: Paper No. 108192, 44 pp.

[22]

GeH, LinA. The character of Thurston’s circle packings. Sci. China Math., 2024, 64(7): 1623-1640

[23]

GeH, LinA, ShenL. The Kähler–Ricci flow on pseudoconvex domains. Math. Res. Lett., 2019, 26(6): 1603-1627

[24]

GeH, XuX. 2-dimensional combinatorial Calabi flow in hyperbolic background geometry. Differential Geom. Appl., 2016, 47: 86-98

[25]

GlickensteinD. A combinatorial Yamabe flow in three dimensions. Topology, 2005, 44(4): 791-808

[26]

Glickenstein D., Geometric triangulations and discrete Laplacians on manifolds. 2005, arXiv:math/0508188

[27]

HamiltonRS. Three-manifolds with positive Ricci curvature. J. Differential Geometry, 1982, 17(2): 255-306

[28]

KoebeP. Kontaktprobleme der konformen Abbildung. Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl., 1936, 88: 141-164

[29]

LuoF. A combinatorial curvature flow for compact 3-manifolds with boundary. Electron. Res. Announc. Amer. Math. Soc., 2005, 11: 12-20

[30]

NieX. On circle patterns and spherical conical metrics. Proc. Amer. Math. Soc., 2024, 152(2): 843-853

[31]

Perelman G., The entropy formula for the Ricci flow and its geometric applications. 2002, arXiv:math/0211159

[32]

Perelman G., Ricci flow with surgery on three-manifolds. 2003, arXiv:math/0303109

[33]

Perelman G., Finite extinction time for the solutions to the Ricci flow on certain three manifolds. 2003, arXiv:math/0307245

[34]

PopelenskyTY. Weighted combinatorial Ricci flow and metrics defined by degenerate circle packings. Filomat, 2023, 37(25): 8675-8681

[35]

RodinB, SullivanD. The convergence of circle packings to the Riemann mapping. J. Differential Geom., 1987, 26(2): 349-360

[36]

ThurstonWPThe Geometry and Topology of Three-manifolds, 2002

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/