PDF
Abstract
In this paper, we mainly prove some congruences conjectured by Z.H. Sun involving Almkvist–Zudilin numbers
${b_n} = \sum\limits_{k = 0}^{\left\lfloor {n/3} \right\rfloor} {\left({\matrix{{2k} \cr k \cr}}\right)\left({\matrix{{3k} \cr k \cr}}\right)} \left({\matrix{n \cr {3k} \cr}}\right)\left({\matrix{{n + k} \cr k \cr}}\right){({- 3})^{n - 3k}}.$
Let p > 3 be a prime. Then
${{b_p} \equiv {b_1} - 6{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}),\quad{b_{2p}} \equiv {b_2} + 144{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}),}$
${{b_{3p}} \equiv {b_3} - 1566{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}),\quad{b_{p - 1}} \equiv {{81}^{p - 1}} - {2 \over {27}}{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}),}$
${{b_{2p - 1}} \equiv {{81}^{2({p - 1})}}{b_1} + {{16} \over 9}{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}).}$
where Bn stands for the n-th Bernoulli number.
Keywords
Congruences
/
Apéry-like numbers
/
harmonic numbers
/
Bernoulli numbers
/
11A07
/
05A10
/
11B65
/
11B68
Cite this article
Download citation ▾
Yan Liu,Guoshuai Mao.
Proof of Some Conjectural Congruences Involving Almkvist–Zudilin Numbers bn.
Frontiers of Mathematics 1-30 DOI:10.1007/s11464-024-0231-1
RIGHTS & PERMISSIONS
Peking University