PDF
Abstract
In this paper, we mainly prove some congruences conjectured by Z.H. Sun involving Almkvist–Zudilin numbers
${b_n} = \sum\limits_{k = 0}^{\left\lfloor {n/3} \right\rfloor} {\left({\matrix{{2k} \cr k \cr}}\right)\left({\matrix{{3k} \cr k \cr}}\right)} \left({\matrix{n \cr {3k} \cr}}\right)\left({\matrix{{n + k} \cr k \cr}}\right){({- 3})^{n - 3k}}.$
Let p > 3 be a prime. Then
${{b_p} \equiv {b_1} - 6{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}),\quad{b_{2p}} \equiv {b_2} + 144{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}),}$
${{b_{3p}} \equiv {b_3} - 1566{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}),\quad{b_{p - 1}} \equiv {{81}^{p - 1}} - {2 \over {27}}{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}),}$
${{b_{2p - 1}} \equiv {{81}^{2({p - 1})}}{b_1} + {{16} \over 9}{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}).}$
where Bn stands for the n-th Bernoulli number.
Keywords
Congruences
/
Apéry-like numbers
/
harmonic numbers
/
Bernoulli numbers
/
11A07
/
05A10
/
11B65
/
11B68
Cite this article
Download citation ▾
Yan Liu, Guoshuai Mao.
Proof of Some Conjectural Congruences Involving Almkvist–Zudilin Numbers bn.
Frontiers of Mathematics 1-30 DOI:10.1007/s11464-024-0231-1
| [1] |
ApéryR. Irrationalité de ζ(2) et ζ(3). Astérisque, 1979, 61: 11-13
|
| [2] |
BeukersF. Another congruences for the Apéry numbers. J. Number Theory, 1987, 25(2): 201-210
|
| [3] |
ChanHH, VerrillH. The Apéry numbers, the Almkvist–Zudilin numbers and new series for 1/π Math. Res. Lett., 2009, 16(3): 405-420
|
| [4] |
ChanHH, ZudilinW. New representations for Apéry-like sequences. Mathematika, 2010, 56(1): 107-117
|
| [5] |
HoffmanME. Quasi-symmetric functions and mod p multiple harmonic sums. Kyushu J. Math., 2015, 69(2): 345-366
|
| [6] |
LiuJC, NiH-X. On two supercongruences involving Almkvist–Zudilin sequences. Czechoslovak Math. J., 2021, 71(4): 1211-1219
|
| [7] |
LiuJC, WangC. Congruences for the (p − 1)th Apéry number. Bull. Aust. Math. Soc., 2019, 99(3): 362-368
|
| [8] |
MaoGS. Proof of two conjectural supercongruences involving Catalan–Larcombe–French numbers. J. Number Theory, 2017, 179: 88-96
|
| [9] |
Mao G.S., On two congruences involving Apéry and Franel numbers. Results Math., 2020, 75 (4): Paper No. 159, 12 pp.
|
| [10] |
MaoGS. Proof of some conjectural congruences involving Apéry-like sequences. J. Difference Equ. Appl., 2025, 31(4): 570-587
|
| [11] |
MaoGS, LiDR. Proof of some conjectural congruences modulo p3. J. Difference Equ. Appl., 2022, 28(4): 496-509
|
| [12] |
MaoGS, LiDR, MaXM. On some congruences involving Apéry-like numbers Sn. J. Difference Equ. Appl., 2023, 29(2): 181-197
|
| [13] |
MaoGS, PanHOn the supercongruences involving harmonic numbers of order 2, 2022arXiv:2201.03418
|
| [14] |
MaoGS, WangJ. On some congruences involving Domb numbers and harmonic numbers. Int. J. Number Theory, 2019, 15(10): 2179-2200
|
| [15] |
MaoGS, ZhaoSongAB. On three conjectural congruences of Z.-H. Sun involving Apéry and Apéry-like numbers. Monatsh. Math., 2023, 201(1): 197-216
|
| [16] |
SunZH. Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl. Math., 2000, 105(1–3): 193-223
|
| [17] |
SunZH. Congruences involving Bernoulli and Euler numbers. J. Number Theory, 2008, 128(2): 280-312
|
| [18] |
SunZH. Super congruences concerning Bernoulli polynomials. Int. J. Number Theory, 2015, 11(8): 2393-2404
|
| [19] |
SunZH. Congruences for Domb and Almkvist–Zudilin numbers. Integral Transforms Spec. Funct., 2015, 26(8): 642-659
|
| [20] |
SunZH. Super congruences for two Apéry-like sequences. J. Difference Equ. Appl., 2018, 24(10): 1685-1713
|
| [21] |
SunZH. Congruences involving binomial coefficients and Apéry-like numbers. Publ. Math. Debrecen, 2020, 96(3–4): 315-346
|
| [22] |
SunZH. Supercongruences involving Apéry-like numbers and binomial coefficients. AIMS Math., 2022, 7(2): 2729-2781
|
| [23] |
SunZH. Congruences for certain families of Apéry-like sequences. Czechoslovak Math. J., 2022, 72(3): 875-912
|
| [24] |
SunZHNew congruences involving Apéry-like numbers, 2020arXiv:2004.07172
|
| [25] |
Tauraso R., Supercongruences for a truncated hypergeometric series. Integers, 2012, 12: Paper No. A45, 12 pp.
|
| [26] |
ZagierD. Integral solutions of Apéry-like recurrence equations. Groups and Symmetries, 2009, Providence, RI. Amer. Math. Soc.. 47
|
RIGHTS & PERMISSIONS
Peking University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.