Proof of Some Conjectural Congruences Involving Almkvist–Zudilin Numbers bn

Yan Liu , Guoshuai Mao

Frontiers of Mathematics ›› : 1 -30.

PDF
Frontiers of Mathematics ›› : 1 -30. DOI: 10.1007/s11464-024-0231-1
Research Article
research-article

Proof of Some Conjectural Congruences Involving Almkvist–Zudilin Numbers bn

Author information +
History +
PDF

Abstract

In this paper, we mainly prove some congruences conjectured by Z.H. Sun involving Almkvist–Zudilin numbers

${b_n} = \sum\limits_{k = 0}^{\left\lfloor {n/3} \right\rfloor} {\left({\matrix{{2k} \cr k \cr}}\right)\left({\matrix{{3k} \cr k \cr}}\right)} \left({\matrix{n \cr {3k} \cr}}\right)\left({\matrix{{n + k} \cr k \cr}}\right){({- 3})^{n - 3k}}.$

Let p > 3 be a prime. Then

${{b_p} \equiv {b_1} - 6{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}),\quad{b_{2p}} \equiv {b_2} + 144{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}),}$

${{b_{3p}} \equiv {b_3} - 1566{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}),\quad{b_{p - 1}} \equiv {{81}^{p - 1}} - {2 \over {27}}{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}),}$

${{b_{2p - 1}} \equiv {{81}^{2({p - 1})}}{b_1} + {{16} \over 9}{p^3}{B_{p - 3}}\quad({\text{mod}\, {p^4}}).}$

where Bn stands for the n-th Bernoulli number.

Keywords

Congruences / Apéry-like numbers / harmonic numbers / Bernoulli numbers / 11A07 / 05A10 / 11B65 / 11B68

Cite this article

Download citation ▾
Yan Liu, Guoshuai Mao. Proof of Some Conjectural Congruences Involving Almkvist–Zudilin Numbers bn. Frontiers of Mathematics 1-30 DOI:10.1007/s11464-024-0231-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ApéryR. Irrationalité de ζ(2) et ζ(3). Astérisque, 1979, 61: 11-13

[2]

BeukersF. Another congruences for the Apéry numbers. J. Number Theory, 1987, 25(2): 201-210

[3]

ChanHH, VerrillH. The Apéry numbers, the Almkvist–Zudilin numbers and new series for 1/π Math. Res. Lett., 2009, 16(3): 405-420

[4]

ChanHH, ZudilinW. New representations for Apéry-like sequences. Mathematika, 2010, 56(1): 107-117

[5]

HoffmanME. Quasi-symmetric functions and mod p multiple harmonic sums. Kyushu J. Math., 2015, 69(2): 345-366

[6]

LiuJC, NiH-X. On two supercongruences involving Almkvist–Zudilin sequences. Czechoslovak Math. J., 2021, 71(4): 1211-1219

[7]

LiuJC, WangC. Congruences for the (p − 1)th Apéry number. Bull. Aust. Math. Soc., 2019, 99(3): 362-368

[8]

MaoGS. Proof of two conjectural supercongruences involving Catalan–Larcombe–French numbers. J. Number Theory, 2017, 179: 88-96

[9]

Mao G.S., On two congruences involving Apéry and Franel numbers. Results Math., 2020, 75 (4): Paper No. 159, 12 pp.

[10]

MaoGS. Proof of some conjectural congruences involving Apéry-like sequences. J. Difference Equ. Appl., 2025, 31(4): 570-587

[11]

MaoGS, LiDR. Proof of some conjectural congruences modulo p3. J. Difference Equ. Appl., 2022, 28(4): 496-509

[12]

MaoGS, LiDR, MaXM. On some congruences involving Apéry-like numbers Sn. J. Difference Equ. Appl., 2023, 29(2): 181-197

[13]

MaoGS, PanHOn the supercongruences involving harmonic numbers of order 2, 2022arXiv:2201.03418

[14]

MaoGS, WangJ. On some congruences involving Domb numbers and harmonic numbers. Int. J. Number Theory, 2019, 15(10): 2179-2200

[15]

MaoGS, ZhaoSongAB. On three conjectural congruences of Z.-H. Sun involving Apéry and Apéry-like numbers. Monatsh. Math., 2023, 201(1): 197-216

[16]

SunZH. Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl. Math., 2000, 105(1–3): 193-223

[17]

SunZH. Congruences involving Bernoulli and Euler numbers. J. Number Theory, 2008, 128(2): 280-312

[18]

SunZH. Super congruences concerning Bernoulli polynomials. Int. J. Number Theory, 2015, 11(8): 2393-2404

[19]

SunZH. Congruences for Domb and Almkvist–Zudilin numbers. Integral Transforms Spec. Funct., 2015, 26(8): 642-659

[20]

SunZH. Super congruences for two Apéry-like sequences. J. Difference Equ. Appl., 2018, 24(10): 1685-1713

[21]

SunZH. Congruences involving binomial coefficients and Apéry-like numbers. Publ. Math. Debrecen, 2020, 96(3–4): 315-346

[22]

SunZH. Supercongruences involving Apéry-like numbers and binomial coefficients. AIMS Math., 2022, 7(2): 2729-2781

[23]

SunZH. Congruences for certain families of Apéry-like sequences. Czechoslovak Math. J., 2022, 72(3): 875-912

[24]

SunZHNew congruences involving Apéry-like numbers, 2020arXiv:2004.07172

[25]

Tauraso R., Supercongruences for a truncated hypergeometric series. Integers, 2012, 12: Paper No. A45, 12 pp.

[26]

ZagierD. Integral solutions of Apéry-like recurrence equations. Groups and Symmetries, 2009, Providence, RI. Amer. Math. Soc.. 47

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/