Spherically Symmetric Einstein-scalar-field Equations for Slowly Particle-like Decaying Null Infinity

Chuxiao Liu , Xiao Zhang

Frontiers of Mathematics ›› : 1 -19.

PDF
Frontiers of Mathematics ›› : 1 -19. DOI: 10.1007/s11464-024-0224-0
Research Article
research-article

Spherically Symmetric Einstein-scalar-field Equations for Slowly Particle-like Decaying Null Infinity

Author information +
History +
PDF

Abstract

We show that the spherically symmetric Einstein-scalar-field equations for small slowly particle-like decaying initial data at null infinity have unique global solutions.

Keywords

Einstein scalar field equations / spherically symmetric Bondi–Sachs metrics / slowly particle-like decaying null infinity / 53C50 / 58J45 / 83C05

Cite this article

Download citation ▾
Chuxiao Liu,Xiao Zhang. Spherically Symmetric Einstein-scalar-field Equations for Slowly Particle-like Decaying Null Infinity. Frontiers of Mathematics 1-19 DOI:10.1007/s11464-024-0224-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BartnikR, McKinnonJ. Particlelike solutions of the Einstein-Yang-Mills equations. Phys. Rev. Lett., 1988, 61(2): 141-144

[2]

BondiH, van der BurgM, MetznerA. Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems. Proc. Roy. Soc. London Ser. A, 1962, 269: 21-52

[3]

ChaeD. Global existence of spherically symmetric solutions to the coupled Einstein and nonlinear Klein–Gordon system. Classical Quantum Gravity, 2001, 18(21): 4589-4605

[4]

ChaeD. Global existence of solutions to the coupled Einstein and Maxwell–Higgs system in the spherical symmetry. Ann. Henri Poincaré, 2003, 4(1): 35-62

[5]

ChristodoulouD. The problem of a self-gravitating scalar field. Comm. Math. Phys., 1986, 105(3): 337-361

[6]

ChristodoulouD. Global existence of generalized solutions of the spherically symmetric Einstein-scalar equations in the large. Comm. Math. Phys., 1986, 106(4): 587-621

[7]

ChristodoulouD. The structure and uniqueness of generalized solutions of the spherically symmetric Einstein-scalar equations. Comm. Math. Phys., 1987, 109(4): 591-611

[8]

ChristodoulouD. A mathematical theory of gravitational collapse. Comm. Math. Phys., 1987, 109(4): 613-647

[9]

ChristodoulouD. Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Comm. Pure Appl. Math., 1993, 46(8): 1131-1220

[10]

LindbladH, RodnianskiI. Global stability of Minkowski space-time in harmonic gauge. Ann. of Math. (2), 2010, 171(3): 1401-1477

[11]

Liu C., Zhang X., Spherically symmetric Einstein-scalar-field equations for wave-like decaying null infinity. Adv. Math., 2022, 409: Paper No. 108642, 48 pp.

[12]

Liu C., Zhang X., Spherically symmetric Einstein-scalar-field equations with potential for wave-like decaying null infinity. Sci. China Math., 2024, doi:https://doi.org/10.1007/s11425-024-2321-3

[13]

LukJ, OhS-J. Quantitative decay rates for dispersive solutions to the Einstein-scalar field system in spherical symmetry. Anal. PDE, 2015, 8(7): 1603-1674

[14]

LukJ, OhS-J. Global nonlinear stability of large dispersive solutions to the Einstein equations. Ann. Henri Poincaré, 2022, 23(7): 2391-2521

[15]

Luk J., Oh S.-J., Yang S., Solutions to the Einstein-scalar-field system in spherical symmetry with large bounded variation norms. Ann. PDE, 2018, 4(1): Paper No. 3, 59 pp.

[16]

Shen D., Global stability of Minkowski spacetime with minimal decay. 2023, arXiv: 2310.07483

[17]

Shen D., Exterior stability of Minkowski spacetime with borderline decay. 2024, arXiv: 2405.00735

[18]

Wijayanto M., Syahreza F., Akbar F., Gunara B., Global existence of classical static solutions of four dimensional Einstein–Klein–Gordon system. Gen. Relativity Gravitation, 2023, 55(1): Paper No. 19, 32 pp.

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/