Quantitative Weighted Endpoint Estimates for Multilinear Pseudo-differential Operators

Jiahui Wang , Moyan Qin , Qingying Xue , Qianqian Zhang

Frontiers of Mathematics ›› : 1 -26.

PDF
Frontiers of Mathematics ›› :1 -26. DOI: 10.1007/s11464-024-0216-0
Research Article
research-article

Quantitative Weighted Endpoint Estimates for Multilinear Pseudo-differential Operators

Author information +
History +
PDF

Abstract

In this paper, we establish the quantitative weighted endpoint estimates for multilinear pseudo-differential operators. The corresponding conclusions for multilinear square functions are also obtained. These were mainly done by using the Nazarov–Treil–Volberg’s method in conjunction with some ideas from Stockdale.

Keywords

Multilinear pseudo-differential operators / symbols of Hörmander class / weights / endpoint estimates / 42B20 / 42B25

Cite this article

Download citation ▾
Jiahui Wang, Moyan Qin, Qingying Xue, Qianqian Zhang. Quantitative Weighted Endpoint Estimates for Multilinear Pseudo-differential Operators. Frontiers of Mathematics 1-26 DOI:10.1007/s11464-024-0216-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bényi, Torres RH. Almost orthogonality and a class of bounded bilinear pseudodifferential operators. Math. Res. Lett., 2004, 11(1): 1-11

[2]

Cao M., Hormozi M., Ibañez-Firnkorn G., Rivera-Ríos I.P., Si Z., Yabuta K., Weak and strong type estimates for the multilinear Littlewood–Paley operators. J. Fourier Anal. Appl., 2021, 27(4): Paper No. 62, 42 pp.

[3]

Cao M, Ibañez-Firnkorn G, Rivera-Ríos IP, Xue Q, Yabuta K. A class of multilinear bounded oscillation operators on measure spaces and applications. Math. Ann., 2024, 388(4): 3627-3755

[4]

Cao M., Xue Q., Yabuta K., Weak and strong type estimates for the multilinear pseudo-differential operators. J. Funct. Anal., 2020, 278(10): Paper No. 108454, 46 pp.

[5]

Coifman RR, Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc., 1975, 212: 315-331

[6]

Coifman RR, Meyer Y. Commutators of singular integrals. Fourier Analysis and Approximation Theory (Proc. Colloq., Budapest, 1976), Vol. I, 1978, Amsterdam, North-Holland Publishing Co.26527319

[7]

Fabes EB, Jerison D, Kenig C. Multilinear Littlewood–Paley estimates with applications to partial differential equations. Proc. Nat. Acad. Sci. U.S.A., 1982, 79(18): 5746-5750

[8]

Fabes EB, Jerison D, Kenig C. Necessary and sufficient conditions for absolute continuity of elliptic harmonic measure. Ann. of Math. (2), 1984, 119(1): 121-141

[9]

Fabes EB, Jerison D, Kenig C. Multilinear square functions and partial differential equations. Amer. J. Math., 1985, 107(6): 1325-1368

[10]

Grafakos L. Classical Fourier Analysis, 2014Third EditionNew York, Springer 249

[11]

Grafakos L, Torres RH. Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana Univ. Math. J., 2002, 51(5): 1261-1276

[12]

Hörmander L. Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math. (2), 1966, 83: 129-209

[13]

Hormozi M, Si Z, Xue Q. On general multilinear square function with non-smooth kernels. Bull. Sci. Math., 2018, 149: 1-22

[14]

Hytönen T, Liu S, Yang DC, Yang DG. Boundedness of Calderón–Zygmund operators on non-homogeneous metric measure spaces. Canad. J. Math., 2012, 64(4): 892-923

[15]

Lerner AK, Ombrosi S, Pérez C, Torres RH, Trujillo-González R. New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory. Adv. Math., 2009, 220(4): 1222-1264

[16]

Li K., Martikainen H., Vuorinen E., Genuinely multilinear weighted estimates for singular integrals in product spaces. Adv. Math., 2021, 393: Paper No. 108099, 49 pp.

[17]

Li K, Moen K, Sun W. The sharp weighted bound for multilinear maximal functions and Calderón–Zygmund operators. J. Fourier Anal. Appl., 2014, 20(4): 751-765

[18]

Li K, Ombrosi S, Pérez C. Proof of an extension of E. Sawyers conjecture about weighted mixed weak-type estimates. Math. Ann., 2019, 374(1–2): 907-929

[19]

Li W, Xue Q, Yabuta K. Multilinear Calderón-Zygmund operators on weighted Hardy spaces. Studia Math., 2010, 199(1): 1-16

[20]

Li W, Xue Q, Yabuta K. Maximal operator for multilinear Calderón–Zygmund singular integral operators on weighted Hardy spaces. J. Math. Anal. Appl., 2011, 33(2): 384-392

[21]

Maldonado D, Naibo V. Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity. J. Fourier Anal. Appl., 2009, 15(2): 218-261

[22]

Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 1972, 165: 207-226

[23]

Mukherjee S., Cotlar-type inequality and weighted boundedness for maximal multilinear singular integrals in Dunkl setting. Adv. Oper. Theory, 2024, 9(2): Paper No. 38, 15 pp.

[24]

Nazarov F, Treil S, Volberg A. Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Internat. Math. Res. Notices, 1998, 1998(9): 463-487

[25]

Ombrosi S, Pérez C, Recchi J. Quantitative weighted mixed weak-type inequalities for classical operators, Indiana Univ. Math. J., 2016, 65(2): 615-640

[26]

Pérez C, Torres RH. Minimal regularity conditions for the end-point estimate of bilinear Calderón-Zygmund operators. Proc. Amer. Math. Soc. Ser. B, 2014, 1: 1-13

[27]

Rodríguez-López S, Rule D, Staubach W. A Seeger–Sogge–Stein theorem for bilinear Fourier integral operators. Adv. Math., 2014, 264: 1-54

[28]

Shi S, Xue Q, Yabuta K. On the boundedness of multilinear Littlewood–Paley gλ* function. J. Math. Pures Appl. (9), 2014, 101(3): 394-413

[29]

Stockdale C.B., A different approach to endpoint weak-type estimates for Calderón–Zygmund operators. J. Math. Anal. Appl., 2020, 487(2): Paper No. 124016, 13 pp.

[30]

Stockdale C.B., A weighted endpoint weak-type estimate for multilinear Calderón–Zygmund operators. J. Geom. Anal., 2023, 33(2): Paper No. 68, 22 pp.

[31]

Stockdale CB, Wick BD. An endpoint weak-type estimate for multilinear Calderón–Zygmund operators. J. Fourier Anal. Appl., 2019, 25(5): 2635-2652

[32]

Tan J., Xue Q., Sharp weighted inequalities for iterated commutators of a class of multilinear operators. 2024, arXiv:2401.01714

[33]

Xue Q, Yan J. On multilinear square function and its applications to multilinear Littlewood–Paley operators with non-convolution type kernels. J. Math. Anal. Appl., 2015, 422(2): 1342-1362

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/