Whittaker Modules for Takiff Algebra of Type B2

Ning Qiao , Xiao He

Frontiers of Mathematics ›› : 1 -34.

PDF
Frontiers of Mathematics ›› : 1 -34. DOI: 10.1007/s11464-024-0200-8
Research Article
research-article

Whittaker Modules for Takiff Algebra of Type B2

Author information +
History +
PDF

Abstract

In this paper, we consider Whittaker modules for the truncated current Lie algebra where the underlying Lie algebra is of type B2 and the level is one. More precisely, we give the construction of a series of simple Whittaker modules and show that they classify simple Whittaker modules under some conditions. When the Whittaker function is singular, we show that there might exist simple Whittaker modules with non-trivial Whittaker vectors, and we concretely give the expressions of those non-trivial Whittaker vectors. Our results show that the existence of non-trivial Whittaker vectors depends not only on the Whittaker function, but also on the actions of the Casimir elements.

Keywords

Takiff algebra / Whittaker vector / Whittaker module / 17B10

Cite this article

Download citation ▾
Ning Qiao, Xiao He. Whittaker Modules for Takiff Algebra of Type B2. Frontiers of Mathematics 1-34 DOI:10.1007/s11464-024-0200-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdamovićD, LuR, ZhaoKM. Whittaker modules for the affine Lie algebra A1(1). Adv. Math., 2016, 289: 438-479.

[2]

Babichenko A., Ridout D., Takiff superalgebras and conformal field theory. J. Phys. A, 2013, 46(12): Paper No. 125204, 26 pp.

[3]

BenkartG, OndrusM. Whitaaker modules for generalized Weyl algebras. Represent. Theory, 2009, 13: 141-164.

[4]

Chaffe M., Category $\cal{O}$ for Takiff Lie algebras. Math. Z., 2023, 304(1): Paper No. 14, 35 pp.

[5]

ChaffeM, TopleyL. Category $\cal{O}$ for truncated current Lie algebras. Canad. J. Math., 2024, 76(5): 1795-1821.

[6]

ChenC-W. Whittaker modules for classical Lie superalgebras. Comm. Math. Phys., 2021, 388(1): 351-383.

[7]

Chen H.J., Ge L., Li Z., Wang L., Classical Whittaker modules for the affine Kac-Moody algebras AN/(1). Adv. Math., 2024, 454: Paper No. 109874, 60 pp.

[8]

ChenHJ, WangL. Whittaker modules over some generalized Weyl algebras. Algebr. Represent. Theory, 2023, 26(6): 3047-3064.

[9]

DulamK, GhateH, LauM, PathakS. Whittaker vectors in singular Whittaker modules. Comm. Algebra, 2024, 52(10): 4268-4271.

[10]

HeX. Finite W-algebras associated to truncated current Lie algebras. Glas. Mat. Ser. III, 2022, 57(1): 17-33.

[11]

KostantB. On Whittaker vectors and representation theory. Invent. Math., 1987, 48(2): 101-184.

[12]

LauM. Takiff algebras, Toda systems, and jet transformations. J. Algebra, 2024, 655: 619-650.

[13]

Mazorchuk V., Söderberg C., Category O for Takiff $\cal{O}$. J. Math. Phys., 2019, 60(11): Paper No. 111702, 15 pp.

[14]

McDowellE. On modules induced from Whittaker modules. J. Algebra, 1985, 96(1): 161-177.

[15]

Molev A., Casimir elements and Sugawara operators for Takiff algebras. J. Math. Phys., 2021, 62(1): Paper No. 011701, 12 pp.

[16]

OndrusM. Whittaker modules for $U_{q}(\frak{sl}_{2})$. J. Algebra, 2005, 289: 192-213.

[17]

OndrusM, WiesnerE. Whittaker modules for the Virasoro algebra. J. Algebra Appl., 2009, 8(3): 363-377.

[18]

PanyushevD, YakimovaO. Takiff algebras with polynomial rings of symmetric invariants. Transform. Groups, 2020, 25(2): 609-624.

[19]

RaïsM, TauvelP. Indice et polynómes invariants pour certaines algèbres de Lie. J. Reine Angew. Math., 1992, 425: 123-140

[20]

TakiffSJ. Rings of invariant polynomials for a class of Lie algebras. Trans. Amer. Math. Soc., 1971, 160: 249-262.

[21]

WilsonB. Highest-weight theory for truncated current Lie algebras. J. Algebra, 2011, 336: 1-27.

[22]

Xia L., Whittaker modules and hyperbolic Toda lattices. 2024, arXiv:2401.00680

[23]

XiaL, ZhaoK. Twisted Whittaker modules over $U_{q}(\frak{gl}_{n+1})$. Sci. China Math., 2023, 66(10): 2191-2202.

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

36

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/