A New Interpretation of Jimbo’s Formula for Painlevé VI

Zikang Wang , Yuancheng Xie , Xiaomeng Xu

Frontiers of Mathematics ›› : 1 -30.

PDF
Frontiers of Mathematics ›› :1 -30. DOI: 10.1007/s11464-024-0189-z
Research Article
research-article

A New Interpretation of Jimbo’s Formula for Painlevé VI

Author information +
History +
PDF

Abstract

In this paper, we first give a new interpretation of Jimbo’s boundary condition for the generic Painlevé VI transcendents, as the shrinking phenomenon in long time behavior of the Jimbo–Miwa–Mori–Sato equation with rank n = 3. We then interpret Jimbo’s asymptotic and monodromy formula from the viewpoint of the isomonodromy deformation with respect to irregular singularities.

Keywords

Isomonodromy equations / Painlevé VI equations / irregular singularities / Stokes matrices / 34M35 / 34M40 / 34M55

Cite this article

Download citation ▾
Zikang Wang, Yuancheng Xie, Xiaomeng Xu. A New Interpretation of Jimbo’s Formula for Painlevé VI. Frontiers of Mathematics 1-30 DOI:10.1007/s11464-024-0189-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balser W. Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations, 2000, New York, Springer-Verlag

[2]

Balser W, Jurkat WB, Lutz DA. On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities, I. SIAM J. Math. Anal., 1981, 12(5): 691-721

[3]

Boalch P. Stokes matrices, Poisson Lie groups and Frobenius manifolds. Invent. Math., 2001, 146(3): 479-506

[4]

Boalch P. From Klein to Painlevé via Fourier, Laplace and Jimbo. Proc. London Math. Soc. (3), 2005, 90(1): 167-208

[5]

Boalch P. The fifty-two icosahedral solutions to Painlevé VI. J. Reine Angew. Math., 2006, 596: 183-214

[6]

Bridgeland T, Toledano Laredo V. Stability conditions and Stokes factors. Invent. Math., 2012, 187(1): 61-98

[7]

Chekhov L., Mazzocco M., Rubtsov V., Quantised Painlevé monodromy manifolds, Sklyanin and Calabi–Yau algebras. Adv. Math., 2021, 376: Paper No. 107442, 52 pp.

[8]

Dal Martello D., Mazzocco M., Generalized double affine Hecke algebras, their representations and higher Teichmüller theory. Adv. Math., 2024, 450: Paper No. 109763, 54 pp.

[9]

Degano G, Guzzetti D. The sixth Painlevé equation as isomonodromy deformation of an irregular system: monodromy data, coalescing eigenvalues, locally holomorphic transcendents and Frobenius manifolds. Nonlinearity, 2023, 36(8): 4110-4168

[10]

Dubrovin B. Geometry of 2D topological field theories. Integrable Systems and Quantum Groups (Montecatini Terme, 1993), 1996, Berlin, Sringer120348 1620

[11]

Dubrovin B, Mazzocco M. Monodromy of certain Painlevé-VI transcendents and reflection groups. Invent. Math., 2000, 141(1): 55-147

[12]

Fokas AS, Its AR, Kapaev AA, Novokshenov VYu. Painlevé Transcendents—The Riemann–Hilbert Approach, 2006, Providence, RI, Amer. Math. Soc. 128

[13]

Fuchs R. Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen. Math. Ann., 1907, 63(3): 301-321

[14]

Guzzetti D. Matching procedure for the sixth Painlevé equation. J. Phys. A, 2006, 39(39): 11973-12031

[15]

Guzzetti D. Constructive Approximation. Constr. Approx., 2015, 41(3): 495-527

[16]

Harnad J. Dual isomonodromic deformations and moment maps to loop algebras. Comm. Math. Phys., 1994, 166(2): 337-365

[17]

Heu V., Joshi N., Radnović M., Global asymptotics of the sixth Painlevé equation in Okamoto’s space. Forum Math. Sigma, 2023, 11: Paper No. e17, 38 pp.

[18]

Inaba M, Iwasaki K, Saito M-H. Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI, I. Publ. Res. Inst. Math. Sci., 2006, 42(4): 987-1089

[19]

Its AR, Novokshenov VYu. The Isomonodromic Deformation Method in the Theory of Painlevé Equations, 1986, Berlin, Springer-Verlag1191

[20]

Jimbo M. Monodromy problem and the boundary condition for some Painlevé equations. Publ. Res. Inst. Math. Sci., 1982, 18(3): 1137-1161

[21]

Jimbo M, Miwa T. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II. Phys. D, 1981, 2(3): 407-448

[22]

Jimbo M, Miwa T, Môri Y, Sato M. Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D, 1980, 1(1): 80-158

[23]

Jimbo M, Miwa T, Ueno K. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, I. General theory and T-function. Phys. D, 1981, 2(2): 306-352

[24]

Lisovyy O, Tykhyy Y. Algebraic solutions of the sixth Painlevé equation. J. Geom. Phys., 2014, 85: 124-163

[25]

Loday-Richaud M. Divergent Series, Summability and Resurgence, II. Simple and Multiple Summability, 2016, Cham, Springer 2154

[26]

Mahoux G. Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients. The Painlevé Property, 1999, New York, Springer3576

[27]

Mazzocco M. Rational solutions of the Painlevé VI equation. J. Phys. A, 2001, 24(11): 2281-2294

[28]

Mazzocco M. Painlevé sixth equation as isomonodromic deformations equation of an irregular system. The Kowalevski Property (Leeds, 2000), 2002, Providence, RI, Amer. Math. Soc.219238 32

[29]

Miwa T. Painlevé property of monodromy preserving deformation equations and the analyticity of τ functions. Publ. Res. Inst. Math. Sci., 1981, 17(2): 703-721

[30]

Okamoto K. Sur les feuilletagés associés aux équations du second ordre à points critiques fixes de P. Painlevé. Japan. J. Math. (N.S.), 1979, 5(1): 1-79

[31]

Reshetikhin N. The Knizhnik–Zamolodchikov system as a deformation of the isomonodromy problem. Lett. Math. Phys., 1992, 26(3): 167-177

[32]

Schlesinger L. Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten. J. Reine Angew. Math., 1912, 141: 96-145

[33]

Tang Q., Xu X., The boundary condition for some isomonodromy equations. 2024, arXiv:2402.07269v2

[34]

Van der Put M, Saito M-H. Moduli spaces for linear differential equations and the Painlevé equations. Ann. Inst. Fourier (Grenoble), 2009, 59(7): 2611-2667

[35]

Xu X. On a connection formula of a higher rank analog of Painlevé, VI. Int. Math. Res. Not. IMRN, 2023, 2023(20): 17729-17748

[36]

Xu X., Regularized limits of Stokes matrices, isomonodromy deformation and crystal basis. 2024, arXiv:1912.07196v5

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/