Mild Ill-posedness for the 2D MHD-Boussinesq System with a Background Magnetic Field

Haigen Wu , Yue Li

Frontiers of Mathematics ›› : 1 -26.

PDF
Frontiers of Mathematics ›› : 1 -26. DOI: 10.1007/s11464-024-0187-1
Research Article

Mild Ill-posedness for the 2D MHD-Boussinesq System with a Background Magnetic Field

Author information +
History +
PDF

Abstract

In this paper, we study the mild ill-posedness problem of the two-dimensional MHD-Boussinesq system with the temperature-dependent thermal diffusivity and electrical conductivity near the background magnetic field in L. Here we construct a sequence of initial data so that the L-norm of vorticity of the corresponding solution is mildly ill-posed.

Keywords

2D MHD-Boussinesq system / ill-posedness / background magnetic field

Cite this article

Download citation ▾
Haigen Wu, Yue Li. Mild Ill-posedness for the 2D MHD-Boussinesq System with a Background Magnetic Field. Frontiers of Mathematics 1-26 DOI:10.1007/s11464-024-0187-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BahouriH, CheminJ-Y, DanchinR. Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, 2011, Heidelberg, Springer: 343[Fundamental Principles of Mathematical Sciences]

[2]

BardosC, SulemC, SulemP-L. Longtime dynamics of a conductive fluid in the presence of a strong magnetic field. Trans. Amer. Math. Soc., 1988, 305(1): 175-191

[3]

BianD, GuiG. On 2-D Boussinesq equations for MHD convection with stratification effects. J. Differential Equations, 2016, 261(3): 1669-1711

[4]

BianD, LiuJ. Initial-boundary value problem to 2D Boussinesq equations for MHD convection with stratification effects. J. Differential Equations, 2017, 263(12): 8074-8101

[5]

BoardmanN, LinH, WuJ. Stabilization of a background magnetic field on a 2 dimensional magnetohydrodynamic flow. SIAM J. Math. Anal., 2020, 52(5): 5001-5035

[6]

CaiY, LeiZ. Global well-posedness of the incompressible magnetohydrodynamics. Arch. Ration. Mech. Anal., 2018, 228(3): 969-993

[7]

ElgindiTM, MasmoudiN. L ill-posedness for a class of equations arising in hydrodynamics. Arch. Ration. Mech. Anal., 2020, 235(3): 1979-2025

[8]

HmidiT, RoussetF. Global well-posedness for the Navier–Stokes–Boussinesq system with axisymmetric data. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 2010, 27(5): 1227-1246

[9]

KulikovskiyAG, LyubimovGAMagnetohydrodynamics, 1965, Reading, MA, Addison-Wesley

[10]

LaiM, PanR, ZhaoK. Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch. Ration. Mech. Anal., 2011, 199(3): 739-760

[11]

LandauLD, LifshitzEM, PitaevskilLP. Electrodynamics of Continuous Media. Landau and Lifshitz Course of Theoretical Physics, 19842nd EditionNew York, Pergamon: 8

[12]

Lemarié-RieussetPG. Recent Developments in the Navier–Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics, 2002, Boca Raton, FL, Chapman & Hall/CRC: 431

[13]

LinF, XuL, ZhangP. Global small solutions of 2-D incompressible MHD system. J. Differential Equations, 2015, 259(10): 5440-5485

[14]

LinF, ZhangP. Global small solutions to an MHD-type system: the three-dimensional case. Comm. Pure Appl. Math., 2014, 67(4): 531-580

[15]

Lin H., Ji R., Wu J., Yan L., Stability of perturbations near a background magnetic field of the 2D incompressible MHD equations with mixed partial dissipation. J. Funct. Anal., 2020, 279 (2): Paper No. 108519, 39 pp.

[16]

MajdaA. Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics, 2003, Providence, RI, American Mathematical Society: 9

[17]

MajdaA, BertozziA. Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics, 2002, Cambridge, Cambridge University Press: 27

[18]

MiaoC, WuJ, ZhangZLittlewood–Paley Theory and Applications to Fluid Dynamics Equations, 2012, Beijing, Science Press(in Chinese)

[19]

PedloskyJGeophysical Fluid Dynamics, 1987, New York, Springer

[20]

PrattJ, BusseA, MüllerW-C. Fluctuation dynamo amplified by intermittent shear bursts in convectively driven magnetohydrodynamic turbulence. Astronomy & Astrophysics, 2013, 557: A76

[21]

VishikM. Hydrodynamics in Besov spaces. Arch. Ration. Mech. Anal., 1998, 145(3): 197-214

[22]

WeiD, ZhangZ. Global well-posedness of the MHD equations in a homogeneous magnetic field. Anal. PDE, 2017, 10(6): 1361-1406

[23]

WuJ. The 2D magnetohydrodynamic equations with partial or fractional dissipation. Lectures on the Analysis of Nonlinear Partial Differential Equations, Part 5, 2018, Somerville, MA, Int. Press: 283-3325

[24]

WuJ, WuY, XuX. Global small solution to the 2D MHD system with a velocity damping term. SIAM J. Math. Anal., 2015, 47(4): 2630-2656

[25]

WuJ, ZhaoJ. Mild ill-posedness in L for 2D resistive MHD equations near a background magnetic field. Int. Math. Res. Not. IMRN, 2023, 2023(6): 4839-4868

[26]

Wu J., Zhu Y., Global solutions of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium. Adv. Math., 2021, 377: Paper No. 107466, 26 pp.

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/