The Algebraic and Geometric Classification of Noncommutative Jordan Algebras

Hani Abdelwahab , Kobiljon Abdurasulov , Ivan Kaygorodov

Frontiers of Mathematics ›› : 1 -24.

PDF
Frontiers of Mathematics ›› :1 -24. DOI: 10.1007/s11464-024-0173-7
Research Article
research-article

The Algebraic and Geometric Classification of Noncommutative Jordan Algebras

Author information +
History +
PDF

Abstract

In this paper, we develop a method to obtain the algebraic classification of noncommutative Jordan algebras from the classification of Jordan algebras of the same dimension. We use this method to obtain the algebraic classification of complex 3-dimensional noncommutative Jordan algebras. As a byproduct, we obtain the classification of complex 3-dimensional Kokoris, standard, generic Poisson, and generic Poisson–Jordan algebras; and also complex 4-dimensional nilpotent Kokoris and standard algebras. In addition, we consider the geometric classification of varieties of cited algebras, that is the description of its irreducible components.

Keywords

Noncommutative Jordan algebra / generic Poisson algebra / algebraic classification / geometric classification / 17A30 / 17A15 / 17C55 / 17B63 / 14L30

Cite this article

Download citation ▾
Hani Abdelwahab, Kobiljon Abdurasulov, Ivan Kaygorodov. The Algebraic and Geometric Classification of Noncommutative Jordan Algebras. Frontiers of Mathematics 1-24 DOI:10.1007/s11464-024-0173-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdelwahab H., Fernández Ouaridi A., Kaygorodov I., Degenerations of Poisson-type algebras. Rend. Circ. Mat. Palermo (2), 2025, 74(1): Paper No. 63, 43 pp.

[2]

Abdurasulov K., Khudoyberdiyev A., Toshtemirova F., The geometric classification of nilpotent Lie–Yamaguti, Bol and compatible Lie algebras. Commun. Math., 2025, 33(3): Paper No. 10, 17 pp.

[3]

Albert A. Power-associative rings. Trans. Amer. Math. Soc., 1948, 64: 552-593

[4]

Ben Hassine A, Chtioui T, Elhamdadi M, Mabrouk S. Cohomology and deformations of left-symmetric Rinehart algebras. Commun. Math., 2024, 32(2): 127-152

[5]

Burde D, Steinhoff C. Classification of orbit closures of 4-dimensional complex Lie algebras. J. Algebra, 1999, 214(2): 729-739

[6]

Cabrera Serrano A, Cabrera García M. Multiplicative primeness of strongly prime non-commutative Jordan algebras. J. Algebra, 2019, 538: 253-260

[7]

Cabrera Serrano A, Cabrera García M, Rodríguez Palacios. Multiplicative semiprimeness of strongly semiprime non-commutative Jordan algebras. Comm. Algebra, 2022, 50(11): 4584-4591

[8]

Chapman A., Vishkautsan S., Roots and right factors of polynomials and left eigenvalues of matrices over Cayley–Dickson algebras. Commun. Math., 2025, 33(3): Paper No. 1, 11 pp.

[9]

Dorofeev G, Pčelincev S. Varieties of standard and accessible algebras. Sibirsk. Mat. Ž., 1977, 18(5): 995-10011205

[10]

Dotsenko V., Identities for deformation quantizations of almost Poisson algebras. Lett. Math. Phys., 2024, 114(1): Paper No. 4, 11 pp.

[11]

Elduque A, Kamiya N, Okubo S. (−1, −1)-balanced Freudenthal Kantor triple systems and noncommutative Jordan algebras. J. Algebra, 2005, 294(1): 19-40

[12]

Fehlberg Júnior R., Kaygorodov I., Saydaliyev A., The geometric classification of symmetric Leibniz algebras. Commun. Math., 2025, 33(1): Paper No. 10, 17 pp.

[13]

Flanigan FJ. Algebraic geography: Varieties of structure constants. Pacific J. Math., 1968, 27: 71-79

[14]

Gorshkov I, Kaygorodov I, Popov Yu. Degenerations of Jordan algebras and “marginal” algebras. Algebra Colloq., 2021, 28(2): 281-294

[15]

Grunewald F, O’Halloran J. Varieties of nilpotent Lie algebras of dimension less than six. J. Algebra, 1988, 112(2): 315-325

[16]

Hegazi A, Abdelwahab H. Classification of five-dimensional nilpotent Jordan algebras. Linear Algebra Appl., 2016, 494: 165-218

[17]

Hua T., Napedenina E., Tvalavadze M., Partially alternative algebras. Commun. Math., 2025, 33(1): Paper No. 9, 17 pp.

[18]

Ismailov N, Kaygorodov I, Volkov Yu. Degenerations of Leibniz and anticommutative algebras. Canad. Math. Bull., 2019, 62(3): 539-549

[19]

Jumaniyozov D., Kaygorodov I., Khudoyberdiyev A., The algebraic and geometric classification of nilpotent noncommutative Jordan algebras. J. Algebra Appl., 2021, 20(11): Paper No. 2150202, 18 pp.

[20]

Kaygorodov I. Non-associative algebraic structures: classification and structure. Commun. Math., 2024, 32(3): 1-62

[21]

Kaygorodov I, Khrypchenko M, Páez-Guillán P. The geometric classification of non-associative algebras: a survey. Commun. Math., 2024, 32(2): 185-284

[22]

Kaygorodov I., Lopatin A., Popov Y., The structure of simple noncommutative Jordan superalgebras. Mediterr. J. Math., 2018, 15(2): Paper No. 33, 20 pp.

[23]

Kaygorodov I, Popov Y, Pozhidaev A, Volkov Y. Degenerations of Zinbiel and nilpotent Leibniz algebras. Linear Multilinear Algebra, 2018, 66(4): 704-716

[24]

Kleinfeld E. Standard and accessible rings. Canadian J. Math., 1956, 8: 335-340

[25]

Kleinfeld E, Kokoris L. Flexible algebras of degree one. Proc. Amer. Math. Soc., 1962, 13: 891-893

[26]

Kokoris L. Simple modal noncommutative Jordan algebras. Proc. Amer. Math. Soc., 1958, 9: 652-654

[27]

Kokoris L. Nodal non-commutative Jordan algebras. Canadian J. Math., 1960, 12: 488-492

[28]

Lopatin A., Rybalov A., On polynomial equations over split octonions. Commun. Math., 2025, 33(3): Paper No. 8, 12 pp.

[29]

Lopes S. Noncommutative algebra and representation theory: symmetry, structure invariants. Commun. Math., 2024, 32(3): 63-117

[30]

McCrimmon K. Structure and representations of noncommutative Jordan algebras. Trans. Amer. Math. Soc., 1966, 121: 187-199

[31]

McCrimmon K. Homotopes of noncommutative Jordan algebras. Math. Ann., 1971, 191: 263-270

[32]

Oehmke R. Nodal noncommutative Jordan algebras. Trans. Amer. Math. Soc., 1964, 112: 416-431

[33]

Popov Y., Representations of simple noncommutative Jordan superalgebras II. J. Pure Appl. Algebra, 2023, 227(1): Paper No. 107135, 29 pp.

[34]

Pozhidaev A, Shestakov I. Simple finite-dimensional modular noncommutative Jordan superalgebras. J. Pure Appl. Algebra, 2019, 223(6): 2320-2344

[35]

Rodrigues R, Papa Neto A, Quintero Vanegas E. Commutative power-associative algebras of small dimension. Comm. Algebra, 2020, 48(12): 5056-5066

[36]

Schafer R. Noncommutative Jordan algebras of characteristic 0. Proc. Amer. Math. Soc., 1955, 6: 472-475

[37]

Schafer R. Simple noncommutative Jordan algebras satisfying ([x, y], y, y) = 0. J. Algebra, 1994, 169(1): 194-199

[38]

Šestakov I. Certain classes of noncommutative Jordan rings. Algebra i Logika, 1971, 10: 407-448

[39]

Skosyrskiĭ V. Strongly prime noncommutative Jordan algebras. Trudy Inst. Mat. (Novosibirsk), 1989, 16: 131-164198–199

[40]

Skosyrskiĭ V. Noncommutative Jordan algebras A with the condition that A(+) is associative. Siberian Math. J., 1991, 32(6): 1024-1030

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/