Finding Product and Sum Patterns in Non-commutative Settings

Tianyi Tao , Ningyuan Yang

Frontiers of Mathematics ›› : 1 -18.

PDF
Frontiers of Mathematics ›› : 1 -18. DOI: 10.1007/s11464-024-0166-6
Research Article
research-article

Finding Product and Sum Patterns in Non-commutative Settings

Author information +
History +
PDF

Abstract

Hindman conjectured that for any finite partition of ℕ, there exists a monochromatic set of the form {x,y,x + y,xy}. Recently, Bowen proved this conjecture for all 2-partitions. In this paper, we extend Bowen’s result to semirings (S, +, ·) where S · s is piecewise syndetic for every sS. To achieve this, we provide a combinatorial proof of a piecewise syndetic generalization of the Bergelson–Glasscock IPr* van der Waerden’s Theorem. Furthermore, we address the non-commutative case, discussing extensions to semirings with non-commutative operations.

Keywords

Semiring / Hindman’s Conjecture / ultrafilter / 05C55 / 37B20 / 54D80

Cite this article

Download citation ▾
Tianyi Tao, Ningyuan Yang. Finding Product and Sum Patterns in Non-commutative Settings. Frontiers of Mathematics 1-18 DOI:10.1007/s11464-024-0166-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/