PDF
Abstract
In this paper we evaluate several determinants involving quadratic residues modulo primes. For example, for any prime p > 3 with p ≡ 3 (mod 4) and a, b ∈ ℤ with p ∤ ab, we prove that
$\det {\left[ {1 + \tan\,\pi \frac{{a{j^2} + b{k^2}}}{p}} \right]_{1 \leqslant j,k \leqslant \tfrac{{p - 1}}{2}}} = \left\{ {\begin{array}{*{20}{c}} { - {2^{\frac{{p - 1}}{2}}}{p^{\frac{{p - 3}}{4}}},}&{if \left( {\frac{{ab}}{p}} \right) = 1,} \\ {{p^{\frac{{p - 3}}{4}}},}&{if \left( {\frac{{ab}}{p}} \right) = - 1,} \end{array}} \right.$
denotes the Legendre symbol. We also pose some conjectures for further research.
Keywords
Determinants
/
Legendre symbols
/
quadratic residues modulo primes
/
the tangent function
/
11A15
/
11C20
/
15A15
/
33B10
Cite this article
Download citation ▾
Zhi-Wei Sun.
Some Determinants Involving Quadratic Residues Modulo Primes.
Frontiers of Mathematics 1-28 DOI:10.1007/s11464-024-0161-y
| [1] |
BerndtBC, EvansRJ, WilliamsKSGauss and Jacobi Sums, 1998, New York. John Wiley & Sons, Inc..
|
| [2] |
GrinbergD, SunZ-W, ZhaoL. Proof of three conjectures on determinants related to quadratic residues. Linear Multilinear Algebra, 2022, 70(19): 3734-3746.
|
| [3] |
IrelandK, RosenMA Classical Introduction to Modern Number Theory, 1990, New York. Springer-Verlag. 84
|
| [4] |
KrattenthalerC. Advanced determinant calculus: a complement. Linear Algebra Appl., 2005, 411: 68-116.
|
| [5] |
Singer D., A bijective proof of Borchardt’s identity. Electron. J. Combin., 2004, 11(1): Research Paper 48, 16 pp.
|
| [6] |
StanleyRPEnumerative Combinatorics, Vol. 1, 2012Second EditionCambridge. Cambridge University Press. 49
|
| [7] |
SunZ-W. On some determinants with Legendre symbol entries. Finite Fields Appl., 2019, 56: 285-307.
|
| [8] |
SunZ-W. Quadratic residues and related permutations and identities. Finite Fields Appl., 2019, 59: 246-283.
|
| [9] |
Sun Z.-W., Arithmetic properties of some permanents. 2021, arXiv:2108.07723
|
| [10] |
SunZ-W. On some determinants involving the tangent functions. Ramanujan J., 2024, 64(2): 309-332.
|
| [11] |
Wu H.-L., Quadratic residues and related permutations. Finite Fields Appl., 2019, 60: Paper No. 101576, 10 pp.
|
| [12] |
Wu H.-L., She Y.-F., Wang L.-Y., Cyclotomic matrices and hypergeometric functions over finite fields. Finite Fields Appl., 2022, 82: Paper No. 102054, 15 pp.
|
RIGHTS & PERMISSIONS
Peking University