PDF
Abstract
In this paper we evaluate several determinants involving quadratic residues modulo primes. For example, for any prime p > 3 with p ≡ 3 (mod 4) and a, b ∈ ℤ with p ∤ ab, we prove that
$\det {\left[ {1 + \tan\,\pi \frac{{a{j^2} + b{k^2}}}{p}} \right]_{1 \leqslant j,k \leqslant \tfrac{{p - 1}}{2}}} = \left\{ {\begin{array}{*{20}{c}} { - {2^{\frac{{p - 1}}{2}}}{p^{\frac{{p - 3}}{4}}},}&{if \left( {\frac{{ab}}{p}} \right) = 1,} \\ {{p^{\frac{{p - 3}}{4}}},}&{if \left( {\frac{{ab}}{p}} \right) = - 1,} \end{array}} \right.$
denotes the Legendre symbol. We also pose some conjectures for further research.
Keywords
Determinants
/
Legendre symbols
/
quadratic residues modulo primes
/
the tangent function
/
11A15
/
11C20
/
15A15
/
33B10
Cite this article
Download citation ▾
Zhi-Wei Sun.
Some Determinants Involving Quadratic Residues Modulo Primes.
Frontiers of Mathematics 1-28 DOI:10.1007/s11464-024-0161-y
| [1] |
BerndtBC, EvansRJ, WilliamsKSGauss and Jacobi Sums, 1998, New York. John Wiley & Sons, Inc..
|
| [2] |
GrinbergD, SunZ-W, ZhaoL. Proof of three conjectures on determinants related to quadratic residues. Linear Multilinear Algebra, 2022, 70(19): 3734-3746.
|
| [3] |
IrelandK, RosenMA Classical Introduction to Modern Number Theory, 1990, New York. Springer-Verlag. 84
|
| [4] |
KrattenthalerC. Advanced determinant calculus: a complement. Linear Algebra Appl., 2005, 411: 68-116.
|
| [5] |
Singer D., A bijective proof of Borchardt’s identity. Electron. J. Combin., 2004, 11(1): Research Paper 48, 16 pp.
|
| [6] |
StanleyRPEnumerative Combinatorics, Vol. 1, 2012Second EditionCambridge. Cambridge University Press. 49
|
| [7] |
SunZ-W. On some determinants with Legendre symbol entries. Finite Fields Appl., 2019, 56: 285-307.
|
| [8] |
SunZ-W. Quadratic residues and related permutations and identities. Finite Fields Appl., 2019, 59: 246-283.
|
| [9] |
Sun Z.-W., Arithmetic properties of some permanents. 2021, arXiv:2108.07723
|
| [10] |
SunZ-W. On some determinants involving the tangent functions. Ramanujan J., 2024, 64(2): 309-332.
|
| [11] |
Wu H.-L., Quadratic residues and related permutations. Finite Fields Appl., 2019, 60: Paper No. 101576, 10 pp.
|
| [12] |
Wu H.-L., She Y.-F., Wang L.-Y., Cyclotomic matrices and hypergeometric functions over finite fields. Finite Fields Appl., 2022, 82: Paper No. 102054, 15 pp.
|
RIGHTS & PERMISSIONS
Peking University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.