Uniformly Distributed Periodic Orbits of Endomorphisms on n-tori

Daohua Yu , Shaobo Gan

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 961 -978.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 961 -978. DOI: 10.1007/s11464-024-0152-z
Research Article
research-article

Uniformly Distributed Periodic Orbits of Endomorphisms on n-tori

Author information +
History +
PDF

Abstract

We prove that any ergodic endomorphism on an n-torus admits a sequence of periodic orbits uniformly distributed in the metric sense. As a corollary, an endomorphism on the torus is ergodic if and only if the Haar measure can be approximated by periodic measures.

Keywords

Ergodic / periodic orbit / uniformly distributed / Haar measure / torus / 37D30

Cite this article

Download citation ▾
Daohua Yu, Shaobo Gan. Uniformly Distributed Periodic Orbits of Endomorphisms on n-tori. Frontiers of Mathematics, 2025, 20(5): 961-978 DOI:10.1007/s11464-024-0152-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AndreescuT, DospinescuG, MushkarovONumber Theory—Concepts and Problems, 2017, Plano, TX. XYZ Press.

[2]

AnosovDVGeodesic Flows on Closed Riemann Manifolds with Negative Curvature, 1967, Providence, RI. American Mathematical Society. Translated from the Russian by S. Feder90

[3]

ArtinMAlgebra, 1991, Englewood Cliffs, NJ. Prentice Hall, Inc..

[4]

BrightCModular periodicity of linear recurrence sequences, 2008

[5]

CornfeldIP, FominSV, SinaĭYaGErgodic Theory, 1982, New York. Springer-Verlag. Translated from the Russian by A. B. Sosinskiĭ245

[6]

DíazLJ, GelfertK, SantiagoB. Weak* and entropy approximation of nonhyperbolic measures: a geometrical approach. Math. Proc. Cambridge Philos. Soc., 2020, 169(3): 507-545.

[7]

Huang W., Lian Z., Ma X., Xu L., Zhang Y., Ergodic optimization for a class of typical maps. 2019, arXiv:1904.01915v3

[8]

KatokA. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math., 1980, 1980(51): 137-173.

[9]

LangSAlgebra, 2002ThirdNew York. Springer-Verlag. . 211

[10]

LiaoG, SunW, TianX. Metric entropy and the number of periodic points. Nonlinearity, 2010, 23(7): 1547-1558.

[11]

MarcusB. A note on periodic points for ergodic toral automorphisms. Monatsh. Math., 1980, 89(2): 121-129.

[12]

RosenM. Polynomials modulo p and the theory of Galois sets. Theory and Applications of Finite Fields, 2012, Providence, RI. Amer. Math. Soc.. 163178. 579

[13]

ShiY. Partially hyperbolic diffeomorphisms on Heisenberg nilmanifolds and holonomy maps. C. R. Math. Acad. Sci. Paris, 2014, 352(9): 743-747.

[14]

SigmundK. Generic properties of invariant measures for Axiom A diffeomorphisms. Invent. Math., 1970, 11: 99-109.

[15]

WardM. The arithmetical theory of linear recurring series. Trans. Amer. Math. Soc., 1933, 35(3): 600-628.

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

72

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/