Cohomology and Abelian Extensions of 3-Bihom-Lie Algebras

Juan Li , Liangyun Chen

Frontiers of Mathematics ›› : 1 -28.

PDF
Frontiers of Mathematics ›› : 1 -28. DOI: 10.1007/s11464-024-0151-0
Research Article

Cohomology and Abelian Extensions of 3-Bihom-Lie Algebras

Author information +
History +
PDF

Abstract

In this paper, we give the cohomology of 3-Bihom-Lie algebras and we show that an α2β−1-derivation is a closed 1-Bihom-cochain with the adjoint representation. As an application, we introduce abelian extensions of 3-Bihom-Lie algebras and obtain that there is a one-to-one correspondence between equivalent classes of abelian extensions and the second cohomology group by closed 2-Bihom-cochains. Moreover, we introduce the notion of a generalized derivation of 3-Bihom-Lie algebras and we construct a new 3-Bihom-Lie algebra with a generalized derivation.

Keywords

3-Bihom-Lie algebras / cohomology / abelian extensions / generalized derivations

Cite this article

Download citation ▾
Juan Li, Liangyun Chen. Cohomology and Abelian Extensions of 3-Bihom-Lie Algebras. Frontiers of Mathematics 1-28 DOI:10.1007/s11464-024-0151-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AmmarF, MabroukS, MakhloufA. Representations and cohomology of n-ary multiplicative Hom-Nambu–Lie algebras. J. Geom. Phys., 2011, 61(10): 1898-1913

[2]

Ben HassineA, MabroukS, NcibO. 3-BiHom-Lie superalgebras induced by BiHom-Lie superalgebras. Linear Multilinear Algebra, 2022, 70(1): 101-121

[3]

ChengY, QiH. Representations of Bihom-Lie algebras. Algebra Colloq., 2022, 29(1): 125-142

[4]

Das A., Cohomology of BiHom-Associative algebras. J. Algebra Appl., 2022, 21(1): Paper No. 2250008, 22 pp.

[5]

Graziani G., Makhlouf A., Menini C., Panaite F., BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras. SIGMA Symmetry Integrability Geom. Methods Appl., 2015, 11: Paper No. 086, 34 pp.

[6]

KitouniA, MakhloufA, SilvestrovS. On n-ary generalization of BiHom-Lie algebras and BiHom-associative algebras. Algebraic Structures and Applications, 2020, Cham, Springer: 99-126 317

[7]

LiJ, ChenL. The construction of 3-Bihom-Lie algebras. Comm. Algebra, 2020, 48(12): 5374-5390

[8]

LiJ, ChenL, ChengY. Representations of Bihom-Lie superalgebras. Linear Multilinear Algebra, 2019, 67(2): 299-326

[9]

LiJ, ChenL, SunB. Bihom-Nijienhuis operators and T*-extensions of Bihom-Lie superalgebras. Hacet. J. Math. Stat., 2019, 48(3): 785-799

[10]

LiuL, MakhloufA, MeniniC, PanaiteF. BiHom-Novikov algebras and infinitesimal BiHom-bialgebras. J. Algebra, 2020, 560: 1146-1172

[11]

LiuJ, MakhloufA, ShengY. A new approach to representations of 3-Lie algebras and Abelian extensions. Algebr. Represent. Theory, 2017, 20(6): 1415-1431

[12]

MabroukS, MakhloufA, MassoudS. Generalized representations of 3-Hom-Lie algebras. Extracta Math., 2020, 35(1): 99-126

[13]

SongL, TangR. Cohomologies, deformations and extensions of n-Hom-Lie algebras. J. Geom. Phys., 2019, 141: 65-78

[14]

Wang S., Guo S., BiHom-Lie superalgebra structures and BiHom-Yang–Baxter equations. Adv. Appl. Clifford Algebr., 2020, 30(3): Paper No. 35, 18 pp.

[15]

Xu S., Cohomology, derivations and abelian extensions of 3-Lie algebras. J. Algebra Appl., 2019, 18(7): Paper No. 1950130, 26 pp.

[16]

ZhangT. Cohomology and deformations of 3-Lie colour algebras. Linear Multilinear Algebra, 2015, 63(4): 651-671

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/