PDF
Abstract
In this paper, we classify globally generated vector bundles with the first Chern class equal to 1 over Grassmannian G(d,n) (1 ≤ d ≤ n − d) over an algebraically closed field in characteristic zero, from the perspective of uniform vector bundles. In particular, we show that they are homogeneous.
Keywords
Uniform vector bundle
/
Harder–Narasimhan filtration
/
Grassmannian
Cite this article
Download citation ▾
Dazhi Zhang.
Globally Generated Vector Bundles with c1 = 1 over Grassmannians.
Frontiers of Mathematics 1-14 DOI:10.1007/s11464-024-0150-1
| [1] |
BallicoE. Uniform vector bundles of rank (n + 1) on ℙn. Tsukuba J. Math., 1983, 7(2): 215-226
|
| [2] |
DrézetJ-M. Exemples de fibrés uniformes non homogènes sur ℙn. C. R. Acad. Sci. Paris Sér. A-B, 1980, 291(2): A125-A128
|
| [3] |
DuR, FangX, GaoY. Vector bundles on rational homogeneous spaces. Ann. Mat. Pura Appl. (4), 2021, 200(6): 2797-2827
|
| [4] |
DuR, FangX, GaoY. Vector bundles on flag varieties. Math. Nachr., 2023, 296(2): 630-649
|
| [5] |
Du R., Wang Y., Zhang D., On uniform and nonhomogeneous vector bundles over Grass-mannians. 2024, arXiv:2404.02593
|
| [6] |
ElencwajgG. Les fibrés uniformes de rang 3 sur ℙ2(C) sont homogènes. Math. Ann., 1978, 231(3): 217-227
|
| [7] |
ElencwajgG, HirschowitzA, SchneiderM. Les fibrés uniformes de rang au plus n sur ℙn(ℂ) sont ceux qu’on croit. Vector Bundles and Differential Equations (Proc. Conf., Nice, 1979), 1980, Boston, MA, Birkhäuser: 37-63 7
|
| [8] |
ElencwajgG. Des fibrés uniformes non homogènes. Math. Ann., 1979, 239(2): 185-192
|
| [9] |
ElliaP. Sur les fibrés uniformes de rang (n + 1) sur ℙn. Mém. Soc. Math. France (N.S.), 1982, 7: 60 pp.
|
| [10] |
GuyotM. Caractérisation par l’uniformité des fibrés universels sur la Grassmanienne. Math. Ann., 1985, 270(1): 47-62
|
| [11] |
OkonekC, SchneiderM, SpindlerHVector Bundles on Complex Projective Spaces, 2011, Basel, Birkhäuser
|
| [12] |
SatoE. Uniform vector bundles on a projective space. J. Math. Soc. Japan, 1976, 28(1): 123-132
|
| [13] |
SchwarzenbergerRLE. Vector bundles on the projective plane. Proc. London Math. Soc. (3), 1961, 11: 623-640
|
| [14] |
Van de VenA. On uniform vector bundles. Math. Ann., 1971, 195: 245-248
|
RIGHTS & PERMISSIONS
Peking University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.