PDF
Abstract
In this article, the authors introduce the Orlicz Calderón–Hardy spaces ${\cal{H}}_{q,2m}^{\Phi}(\mathbb{R}^{n})$ and investigate their properties. As an application, for m ∈ ℕ, the authors show that the iterated Laplacian Δm is bijective from Orlicz Calderón–Hardy spaces ${\cal{H}}_{q,2m}^{\Phi}(\mathbb{R}^{n})$ to corresponding Orlicz–Hardy spaces HΦ(ℝn).
Keywords
Calderón–Hardy space
/
Young function
/
iterated Laplacian
/
Orlicz–Hardy space
/
fundamental solution
/
42B25
/
42B30
/
42B37
Cite this article
Download citation ▾
Zirong Liu, Ziyi He, Huixia Mo.
Orlicz Calderón–Hardy Spaces.
Frontiers of Mathematics 1-24 DOI:10.1007/s11464-024-0149-7
| [1] |
AstalaK, IwaniecT, KoskelaP, MartinG. Mappings of BMO-bounded distortion. Math. Ann., 2000, 317(4): 703-726
|
| [2] |
BirnbaumZ, OrliczW. Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Studia Math., 1931, 3: 1-67
|
| [3] |
CalderónAP. Estimates for singular integral operators in terms of maximal functions. Studia Math., 1972, 44: 563-582
|
| [4] |
CoifmanRR, WeissG. Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes. Étude de Certaines Intégrales Singulières, 1971, Berlin-New York. Springer-Verlag. Vol. 242
|
| [5] |
FeffermanC, SteinEM. Hp spaces of several variables. Acta Math., 1972, 129(3–4): 137-193
|
| [6] |
GattoAE, SegoviaC, JiménezJR. On the solution of the equation ΔmF = f for f ∈ Hp. Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill, 1981), 1983, Belmont, CA. Wadsworth. 394415
|
| [7] |
Gel’fandIM, ShilovGEGeneralized Function. Vol. I: Properties and Operations, 1964, New York-London. Academic Press.
|
| [8] |
GrafakosLClassical Fourier Analysis, Third Edition, 2014, New York. Springer. 249
|
| [9] |
IwaniecT, OnninenJ. ℋ1-estimates of Jacobians by subdeterminants. Math. Ann., 2002, 324(2): 341-358
|
| [10] |
JansonS. Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math. J., 1980, 47(4): 959-982
|
| [11] |
JiangR, YangD, ZhouY. Orlicz–Hardy spaces associated with operators. Sci. China Ser. A, 2009, 52(5): 1042-1080
|
| [12] |
JiangR, YangD. New Orlicz–Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal., 2010, 258(4): 1167-1224
|
| [13] |
JiangR, YangD. Orlicz–Hardy spaces associated with operators satisfying Davies–Gaffney estimates. Commun. Contemp. Math., 2011, 13(2): 331-373
|
| [14] |
MartínezS, WolanskiN. A minimum problem with free boundary in Orlicz spaces. Adv. Math., 2008, 218(6): 1914-1971
|
| [15] |
NakaiE, SawanoY. Orlicz–Hardy spaces and their duals. Sci. China Math., 2014, 57(5): 903-962
|
| [16] |
Nekvinda A., Peša D., On the properties of quasi-Banach function spaces. J. Geom. Anal., 2024, 34 (8): Paper No. 231, 29 pp.
|
| [17] |
OmbrosiS. On spaces associated with primitives of distributions in one-sided Hardy spaces. Rev. Un. Mat. Argentina, 2001, 42(2): 81-102
|
| [18] |
OmbrosiS, PeriniA, TestoniR. An interpolation theorem between Calderón–Hardy spaces. Rev. Un. Mat. Argentina, 2017, 58(1): 1-19
|
| [19] |
OmbrosiS, SegoviaC. One–sided singular integral operators on Calderón–Hardy spaces. Rev. Un. Mat. Argentina, 2003, 44(1): 17-32
|
| [20] |
OrliczW. Über eine gewisse Klasse von Räumen vom Typus B. Bull. Inst. Acad. Pol. Ser. A, 1932, 8: 207-220
|
| [21] |
PeriniA. Boundedness of one–sided fractional integrals in the one–sided Calderón–Hardy spaces. Comment. Math. Univ. Carolin., 2011, 52(1): 57-75
|
| [22] |
RaoMM, RenZDApplications of Orlicz Spaces, 2002, New York. Marcel Dekker, Inc.. 250
|
| [23] |
RochaP. Calderón–Hardy spaces with variable exponents and the solution of the equation ΔmF = f for f ∈ Hp(·)(ℝn). Math. Inequal. Appl., 2016, 19(3): 1013-1030
|
| [24] |
RochaP. Weighted Calderón–Hardy spaces. Math. Bohem., 2025, 150(2): 187-205
|
| [25] |
De RosaL, SegoviaC. Weighted Hp spaces for one sided maximal function. Harmonic Analysis and Operator Theory (Caracas, 1994), 1995, Providence, RI. Amer. Math. Soc.. 161183189
|
| [26] |
SteinEMSingular Integrals and Differentiability Properties of Functions, 1970, Princeton, NJ. Princeton University Press. 30
|
| [27] |
SteinEM, WeissG. On the theory of harmonic functions of several variables. I. The theory of Hp-spaces. Acta Math., 1960, 103: 25-62
|
| [28] |
StrömbergJO. Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J., 1979, 28(3): 511-544
|
| [29] |
VivianiBE. An atomic decomposition of the predual of BMO(ρ). Rev. Mat. Iberoamericana, 1987, 3(3–4): 401-425
|
| [30] |
YangD, YangS. Real–variable characterizations of Orlicz–Hardy spaces on strongly Lipschitz domains of ℝn. Rev. Mat. Iberoam., 2013, 29(1): 237-292
|
RIGHTS & PERMISSIONS
Peking University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.