Orlicz Calderón–Hardy Spaces

Zirong Liu , Ziyi He , Huixia Mo

Frontiers of Mathematics ›› : 1 -24.

PDF
Frontiers of Mathematics ›› :1 -24. DOI: 10.1007/s11464-024-0149-7
Research Article
research-article

Orlicz Calderón–Hardy Spaces

Author information +
History +
PDF

Abstract

In this article, the authors introduce the Orlicz Calderón–Hardy spaces ${\cal{H}}_{q,2m}^{\Phi}(\mathbb{R}^{n})$ and investigate their properties. As an application, for m ∈ ℕ, the authors show that the iterated Laplacian Δm is bijective from Orlicz Calderón–Hardy spaces ${\cal{H}}_{q,2m}^{\Phi}(\mathbb{R}^{n})$ to corresponding Orlicz–Hardy spaces HΦ(ℝn).

Keywords

Calderón–Hardy space / Young function / iterated Laplacian / Orlicz–Hardy space / fundamental solution / 42B25 / 42B30 / 42B37

Cite this article

Download citation ▾
Zirong Liu, Ziyi He, Huixia Mo. Orlicz Calderón–Hardy Spaces. Frontiers of Mathematics 1-24 DOI:10.1007/s11464-024-0149-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AstalaK, IwaniecT, KoskelaP, MartinG. Mappings of BMO-bounded distortion. Math. Ann., 2000, 317(4): 703-726

[2]

BirnbaumZ, OrliczW. Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Studia Math., 1931, 3: 1-67

[3]

CalderónAP. Estimates for singular integral operators in terms of maximal functions. Studia Math., 1972, 44: 563-582

[4]

CoifmanRR, WeissG. Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes. Étude de Certaines Intégrales Singulières, 1971, Berlin-New York. Springer-Verlag. Vol. 242

[5]

FeffermanC, SteinEM. Hp spaces of several variables. Acta Math., 1972, 129(3–4): 137-193

[6]

GattoAE, SegoviaC, JiménezJR. On the solution of the equation ΔmF = f for fHp. Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill, 1981), 1983, Belmont, CA. Wadsworth. 394415

[7]

Gel’fandIM, ShilovGEGeneralized Function. Vol. I: Properties and Operations, 1964, New York-London. Academic Press.

[8]

GrafakosLClassical Fourier Analysis, Third Edition, 2014, New York. Springer. 249

[9]

IwaniecT, OnninenJ. ℋ1-estimates of Jacobians by subdeterminants. Math. Ann., 2002, 324(2): 341-358

[10]

JansonS. Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math. J., 1980, 47(4): 959-982

[11]

JiangR, YangD, ZhouY. Orlicz–Hardy spaces associated with operators. Sci. China Ser. A, 2009, 52(5): 1042-1080

[12]

JiangR, YangD. New Orlicz–Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal., 2010, 258(4): 1167-1224

[13]

JiangR, YangD. Orlicz–Hardy spaces associated with operators satisfying Davies–Gaffney estimates. Commun. Contemp. Math., 2011, 13(2): 331-373

[14]

MartínezS, WolanskiN. A minimum problem with free boundary in Orlicz spaces. Adv. Math., 2008, 218(6): 1914-1971

[15]

NakaiE, SawanoY. Orlicz–Hardy spaces and their duals. Sci. China Math., 2014, 57(5): 903-962

[16]

Nekvinda A., Peša D., On the properties of quasi-Banach function spaces. J. Geom. Anal., 2024, 34 (8): Paper No. 231, 29 pp.

[17]

OmbrosiS. On spaces associated with primitives of distributions in one-sided Hardy spaces. Rev. Un. Mat. Argentina, 2001, 42(2): 81-102

[18]

OmbrosiS, PeriniA, TestoniR. An interpolation theorem between Calderón–Hardy spaces. Rev. Un. Mat. Argentina, 2017, 58(1): 1-19

[19]

OmbrosiS, SegoviaC. One–sided singular integral operators on Calderón–Hardy spaces. Rev. Un. Mat. Argentina, 2003, 44(1): 17-32

[20]

OrliczW. Über eine gewisse Klasse von Räumen vom Typus B. Bull. Inst. Acad. Pol. Ser. A, 1932, 8: 207-220

[21]

PeriniA. Boundedness of one–sided fractional integrals in the one–sided Calderón–Hardy spaces. Comment. Math. Univ. Carolin., 2011, 52(1): 57-75

[22]

RaoMM, RenZDApplications of Orlicz Spaces, 2002, New York. Marcel Dekker, Inc.. 250

[23]

RochaP. Calderón–Hardy spaces with variable exponents and the solution of the equation ΔmF = f for fHp(·)(ℝn). Math. Inequal. Appl., 2016, 19(3): 1013-1030

[24]

RochaP. Weighted Calderón–Hardy spaces. Math. Bohem., 2025, 150(2): 187-205

[25]

De RosaL, SegoviaC. Weighted Hp spaces for one sided maximal function. Harmonic Analysis and Operator Theory (Caracas, 1994), 1995, Providence, RI. Amer. Math. Soc.. 161183189

[26]

SteinEMSingular Integrals and Differentiability Properties of Functions, 1970, Princeton, NJ. Princeton University Press. 30

[27]

SteinEM, WeissG. On the theory of harmonic functions of several variables. I. The theory of Hp-spaces. Acta Math., 1960, 103: 25-62

[28]

StrömbergJO. Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J., 1979, 28(3): 511-544

[29]

VivianiBE. An atomic decomposition of the predual of BMO(ρ). Rev. Mat. Iberoamericana, 1987, 3(3–4): 401-425

[30]

YangD, YangS. Real–variable characterizations of Orlicz–Hardy spaces on strongly Lipschitz domains of ℝn. Rev. Mat. Iberoam., 2013, 29(1): 237-292

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

35

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/