A Note on Demailly’s Transcendental Morse Inequalities Conjecture

Yinji Li , Zhiwei Wang , Xiangyu Zhou

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 1195 -1199.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 1195 -1199. DOI: 10.1007/s11464-024-0145-y
Research Article
research-article

A Note on Demailly’s Transcendental Morse Inequalities Conjecture

Author information +
History +
PDF

Abstract

Let (X, ω) be an n-dimensional compact Hermitian manifold with ω a pluri-closed Hermitian metric, i.e., ddcω = 0. Let $\left\{\alpha \right\},\left\{\beta \right\} \in H_{BC}^{1,1}\left({X,\mathbb{R}} \right)$ be two nef classes, such that αnn−1 · β > 0. In this short note, we prove that if there is a bounded quasi-plurisubharmonic potential ρ, such that α + ddcρ ≥ 0 in the weak sense of currents, then the class {αβ} contains a Kähler current. This gives a partial solution of Demailly’s transcendental Morse inequalities conjecture.

Keywords

Demailly’s transcendental Morse inequalities conjecture / Hermitian manifold / pluri-closed metric / Kähler current / nef class / complex Monge–Ampère equation / 32U05 / 32W20 / 53C55

Cite this article

Download citation ▾
Yinji Li, Zhiwei Wang, Xiangyu Zhou. A Note on Demailly’s Transcendental Morse Inequalities Conjecture. Frontiers of Mathematics, 2025, 20(5): 1195-1199 DOI:10.1007/s11464-024-0145-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BedfordE, TaylorBA. A new capacity for plurisubharmonic functions. Acta Math., 1982, 149(1–2): 1-40.

[2]

BoucksomS. On the volume of a line bundle. Internat. J. Math., 2002, 13(10): 1043-1063.

[3]

BoucksomS, DemaillyJ-P, PăunM, PeternellT. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom., 2013, 22(2): 201-248.

[4]

ChioseI. The Kähler rank of compact complex manifolds. J. Geom. Anal., 2016, 26(1): 603-615.

[5]

FinoA, TomassiniA. A survey on strong KT structures. Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 2009, 52(2): 99-116

[6]

GuedjV, LuHC. Quasi-plurisubharmonic envelopes 2: bounds on Monge–Ampère volumes. Algebr. Geom., 2022, 9(6): 688-713.

[7]

LamariA. Courants kählériens et surfaces compactes. Ann. Inst. Fourier (Grenoble), 1999, 49(1): 263-285.

[8]

LiY, WangZ, ZhouX. Degenerate complex Monge–Ampère type equations on compact Hermitian manifolds and applications. Trans. Amer. Math. Soc., 2024, 377(8): 5947-5992

[9]

PopoviciD. Sufficient bigness criterion for differences of two nef classes. Math. Ann., 2016, 364(1–2): 649-655.

[10]

PopoviciD. Volume and self-intersection of differences of two nef classes. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2017, 17(4): 1255-1299

[11]

Witt NyströmD. Duality between the pseudoeffective and the movable cone on a projective manifold. J. Amer. Math. Soc., 2019, 32(3): 675-689.

[12]

XiaoJ. Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds. Ann. Inst. Fourier (Grenoble), 2015, 65(3): 1367-1379.

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

60

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/