On Third Order Tensors and Their Products

Li Wang , Changqing Xu , Yiran Xu , Ziqi Zhai

Frontiers of Mathematics ›› : 1 -15.

PDF
Frontiers of Mathematics ›› : 1 -15. DOI: 10.1007/s11464-024-0143-0
Research Article

On Third Order Tensors and Their Products

Author information +
History +
PDF

Abstract

A third order tensor is a three-way array which can be used to describe high dimensional data-set in dimensional reduction and clustering. In this paper, we mainly study the third order tensors. We introduce the slice identity tensor after the introduction of the slice product and Kronecker product defined on the set of third order tensors, and then we investigate the invertibility of the 3-order tensors in terms of the slice product. We also introduce the slice-diagonal tensors and investigate their spectrums.

Keywords

Kronecker product / slice product / slice-diagonal tensor / invertible tensor

Cite this article

Download citation ▾
Li Wang, Changqing Xu, Yiran Xu, Ziqi Zhai. On Third Order Tensors and Their Products. Frontiers of Mathematics 1-15 DOI:10.1007/s11464-024-0143-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChangKC, PearsonK, ZhangT. Perron–Frobenius theorem for nonnegative tensors. Commun. Math. Sci., 2008, 6(2): 507-520

[2]

ComonP, GolubG, LimL, MourrainB. Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl., 2008, 30(3): 1254-1279

[3]

FrankelTGravitational Curvature—An Introduction to Einstein’s Theory, 1979, San Francisco, CA, W. H. Freeman and Co.

[4]

HuS, HuangZ, LingC, QiL. On determinants and eigenvalue theory of tensors. J. Symbolic Comput., 2013, 50: 508-531

[5]

KoldaTG, BaderBW. Tensor decompositions and applications. SIAM Rev., 2009, 51(3): 455-500

[6]

LimL-H. Singular values and eigenvalues of tensors: A variational approach. 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, Piscataway, IEEE: 129-132

[7]

OrúsR. Tensor networks for complex quantum systems. Nature Rev. Phys., 2019, 1: 538-550

[8]

PanagakisY, KossaifiJ, ChrysosGG, OldfieldJ, NicolaouMA, AnandkumarA. Tensor methods in computer vision and deep learning. Proc. IEEE, 2021, 109(5): 863-890

[9]

QiL. Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput., 2005, 40(6): 1302-1324

[10]

QiL. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl., 2013, 439(1): 228-238

[11]

QiL, ChenH, ChenY. Tensor Eigenvalues and Their Applications. Adv. Mech. Math., 2008, Singapore, Springer39

[12]

QiL, LuoZTensor Analysis: Spectral Theory and Special Tensors, 2017, Philadelphia, SIAM Press

[13]

ShahG. Functional MRI and diffusion tensor imaging. Diffusion-Weighted MR Imaging of the Brain, Head and Neck, and Spine, 2021, Cham, Springer: 77-102

[14]

TaguchiY, TurkiTA tensor decomposition-based integrated analysis applicable to multiple gene expression profiles without sample matching, 2022 Art. No. 21242, 11 pp

[15]

XuC, HeL, LinZ. Commutation matrices and commutation tensors. Linear Multilinear Algebra, 2020, 68(9): 1721-1742

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/