Extended Rota-Baxter Operators on Leibniz Algebras

Yizheng Li , Dingguo Wang

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (6) : 1385 -1406.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (6) :1385 -1406. DOI: 10.1007/s11464-024-0123-4
Research Article
research-article

Extended Rota-Baxter Operators on Leibniz Algebras

Author information +
History +
PDF

Abstract

In this paper, we obtain the notion of an extended Rota-Baxter operator that generalizes the Rota-Baxter operator and the modified Rota-Baxter operator on Leibniz algebras, and give examples and general properties of extended Rota-Baxter operators. Next, we define a representation theory of extended Rota-Baxter Leibniz algebras and construct a cohomology theory. Furthermore, we justify this cohomology theory by interpreting lower degree cohomology groups as formal deformations of extended Rota-Baxter Leibniz algebras. Finally, we study non-abelian extensions of an extended Rota-Baxter Leibniz algebra by another extended Rota-Baxter Leibniz algebra, and we consider abelian extensions of extended Rota-Baxter Leibniz algebras as a particular case of non-abelian extensions.

Keywords

Leibniz algebra / extended Rota-Baxter operator / cohomology / formal deformation / non-abelian extension / 17A32 / 17B99

Cite this article

Download citation ▾
Yizheng Li, Dingguo Wang. Extended Rota-Baxter Operators on Leibniz Algebras. Frontiers of Mathematics, 2025, 20(6): 1385-1406 DOI:10.1007/s11464-024-0123-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bardakov V., Singh M., Extensions and automorphisms of Lie algebras. J. Algebra Appl., 2017, 16 (9): Paper No. 1750162, 15 pp.

[2]

Baxter G. An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math., 1960, 10: 731-742

[3]

Casas J, Corral N. On universal central extensions of Leibniz algebras. Comm. Algebra, 2009, 37(6): 2104-2120

[4]

Casas J, Faro E, Vieites A. Abelian extensions of Leibniz algebras. Comm. Algebra, 1999, 27(6): 2833-2846

[5]

Das A. Relative Rota-Baxter operators of arbitrary weight on Leibniz algebras and post-Leibniz algebra structures. Publ. Math. Debrecen, 2023, 103(3–4): 385-406

[6]

Eilenberg S, Maclane S. Cohomology theory in abstract groups, II. Group extensions with a non-abelian kernel. Ann. of Math. (2), 1947, 48: 326-341

[7]

Guo L. An Introduction to Rota-Baxter Algebra, 2012, Beijing, Higher Education Press

[8]

Guo S, Das A. Cohomology and deformations of generalized Reynolds operators on Leibniz algebras. Rocky Mountain J. Math., 2024, 54(1): 161-178

[9]

Guo Y., Hou B., Crossed modules and non-abelian extensions of Rota-Baxter Leibniz algebras. J. Geom. Phys., 2023, 191: Paper No. 104906, 18 pp.

[10]

Ladra M, Shahryari M, Zargeh C. HNN-extensions of Leibniz algebras. J. Algebra, 2019, 532: 183-200

[11]

Li Y., Wang D., Cohomology and deformation theory of crossed homomorphisms of Leibniz algebras. 2022, arXiv:2211.09993

[12]

Liu J, Sheng Y, Wang Q. On non-abelian extensions of Leibniz algebras. Comm. Algebra, 2018, 46(2): 574-587

[13]

Loday J-L. Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. (2), 1993, 39(3–4): 269-293

[14]

Loday J-L, Pirashvili T. Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann., 1993, 296(1): 139-158

[15]

Mishra S, Das A, Hazra S. Non-abelian extensions of Rota-Baxter Lie algebras and inducibility of automorphisms. Linear Algebra Appl., 2023, 669: 147-174

[16]

Mondal B, Saha R. Cohomology, deformations and extensions of Rota-Baxter Leibniz algebras. Commun. Math., 2022, 30(2): 93-117

[17]

Mondal B., Saha R., Cohomology of modified Rota-Baxter Leibniz algebra of weight λ. 2023, arXiv:2211.07944v2

[18]

Sun Q, Jing N. O\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathscr{O}$$\end{document}-operators and related structure on Leibniz algebras. Comm. Algebra, 2023, 51(5): 2199-2216

[19]

Tang R, Sheng Y. Leibniz bialgebras, relative Rota-Baxter operators and the classical Leibniz Yang-Baxter equation. J. Noncommut. Geom., 2022, 16(4): 1179-1211

[20]

Tang R., Sheng Y., Zhou Y., Deformations of relative Rota-Baxter operators on Leibniz algebras. Int. J. Geom. Methods Mod. Phys., 2020, 17 (12): Paper No. 2050174, 21 pp.

[21]

Tang R, Xu N, Sheng Y. Symplectic structures, product structures and complex structures on Leibniz algebras. J. Algebra, 2024, 647: 710-743

[22]

Zheng S., Guo L., Qiu H., Extended Rota-Baxter algebras, Diagonally colored delannoy paths and Hopf algebras. 2024, arXiv:2401.11363

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/