Approximation of Random Periodic Solutions for Neutral Type SDEs with Non-uniform Dissipativity

Min Zhu , Mingtian Tang

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 1125 -1178.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 1125 -1178. DOI: 10.1007/s11464-024-0099-0
Research Article
research-article

Approximation of Random Periodic Solutions for Neutral Type SDEs with Non-uniform Dissipativity

Author information +
History +
PDF

Abstract

The aim of this work is to approximate the random periodic solutions of neutral type stochastic differential equations (SDEs) with non-uniform dissipativity via the discretization method. The non-uniform dissipativity here means the drift satisfying dissipativity on average rather than uniform dissipativity concerning the time variables. On one hand, we show the existence and uniqueness of random periodic solutions for neutral type SDEs via the synchronous coupling approach when the starting time tends to −∞. On the other hand, using the Euler–Maruyama scheme on an infinite time horizon we study the existence and uniqueness of the numerical approximation of random periodic solution. During this procedure, the difficulties, which arose from the time-discretization of both the neutral term and the functional solutions, have to be dealt with.

Keywords

Random periodic solution / non-uniform dissipativity / neutral type stochastic differential equations / Euler–Maruyama method / 60H10 / 60H35 / 65C20 / 37H99

Cite this article

Download citation ▾
Min Zhu, Mingtian Tang. Approximation of Random Periodic Solutions for Neutral Type SDEs with Non-uniform Dissipativity. Frontiers of Mathematics, 2025, 20(5): 1125-1178 DOI:10.1007/s11464-024-0099-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bao J., Wu Y., Random periodic solutions for stochastic differential equations with non-uniform dissipativity. 2022, arXiv:2202.09771

[2]

BaoJ, YinG, YuanC. Ergodicity for functional stochastic differential equations and applications. Nonlinear Anal., 2014, 98: 66-82.

[3]

Feng C., Liu Y., Zhao H., Numerical approximation of random periodic solutions of stochastic differential equations. Z. Angew. Math. Phys., 2017, 68 (5): Paper No. 119, 32 pp.

[4]

FengC, ZhaoH. Random periodic solutions of SPDEs via integral equations and Wiener–Sobolev compact embedding. J. Funct. Anal., 2012, 262(10): 4377-4422.

[5]

FengC, ZhaoH, ZhouB. Pathwise random periodic solutions of stochastic differential equations. J. Differential Equations, 2011, 251(1): 119-149.

[6]

KlebanerFCIntroduction to Stochastic Calculus with Applications, 2012Third EditionLondon. Imperial College Press. .

[7]

LiebermanGM. Time-periodic solutions of linear parabolic differential equations. Comm. Partial Differential Equations, 1999, 24(3–4): 631-663.

[8]

LiebermanGM. Time-periodic solutions of quasilinear parabolic differential equations, I. Dirichlet boundary conditions. J. Math. Anal. Appl., 2001, 264(2): 617-638.

[9]

LiuYNumerical analysis of random periodicity of stochastic differential equations, 2018, Loughborough. Loughborough University.

[10]

LuoYRandom periodic solutions of stochastic functional differential equations, 2014, Loughborough. Loughborough University.

[11]

MaoX. Numerical solutions of stochastic functional differential equations. LMS J. Comput. Math., 2003, 6: 141-161.

[12]

OsękowskiA. Sharp maximal inequalities for the martingale square bracket. Stochastics, 2010, 82(6): 589-605.

[13]

PoincaréH. Mémoire sur les courbes définies par une équation différentielle. Journal de Mathématiques Pures et Appliqées, 1881, 7(3): 375-442

[14]

TanL, JinW, SuoY. Stability in distribution of neutral stochastic functional differential equations. Statist. Probab. Lett., 2015, 107: 27-36.

[15]

VejvodaO, HerrmannL, LovicarV, SovaM, StraškrabaI, ŠtědrýMPartial Differential Equations: Time-periodic Solutions, 1981, The Hague. Martinus Nijhoff Publishers.

[16]

WeiR, ChenC. Numerical approximation of stochastic theta method for random periodic solution of stochastic differential equations. Acta Math. Appl. Sin. Engl. Ser., 2020, 36(3): 689-701.

[17]

WuF, MaoX. Numerical solutions of neutral stochastic functional differential equations. SIAM J. Numer. Anal., 2008, 46(4): 1821-1841.

[18]

WuY. Backward Euler–Maruyama method for the random periodic solution of a stochastic differential equation with a monotone drift. J. Theoret. Probab., 2023, 36(1): 605-622.

[19]

WuY, YuanC. The Galerkin analysis for the random periodic solution of semilinear stochastic evolution equations. J. Theoret. Probab., 2024, 37(1): 133-159.

[20]

ZhaoH, ZhengZ. Random periodic solutions of random dynamical systems. J. Differential Equations, 2009, 246(5): 2020-2038.

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

46

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/