PDF
Abstract
Based on the three-ball inequality and the doubling inequality established in [Math. Ann., 2012, 353(4): 1157–1181], we quantify the strong unique continuation established by Koch and Tataru [Comm. Pure Appl. Math., 2001, 54(3): 339–360] for elliptic operators with unbounded lower-order coefficients. We also obtain a quantitative strong unique continuation for eigenfunctions, which we use to prove that two Dirichlet–Laplace–Beltrami operators are gauge equivalent when their corresponding metrics coincide in the neighborhood of the boundary and their boundary spectral data coincide on a subset of positive measure.
Keywords
Elliptic operators
/
unbounded coefficients
/
strong unique continuation
/
three-ball inequality
/
doubling inequality
/
eigenfunctions
/
Laplace–Beltrami operator
/
gauge equivalent operators
/
35B60
/
35J15
/
35R30
Cite this article
Download citation ▾
Mourad Choulli.
Quantitative Strong Unique Continuation for Elliptic Operators—Application to an Inverse Spectral Problem.
Frontiers of Mathematics, 2026, 21(1): 223-233 DOI:10.1007/s11464-024-0097-2
| [1] |
Alessandrini G, Sylvester J. Stability for a multidimensional inverse spectral theorem. Comm. Partial Differential Equations, 1990, 15(5): 711-736
|
| [2] |
Belishev M. An approach to multidimensional inverse problems for the wave equation. Dokl. Akad. Nauk SSSR, 1987, 297(3): 524-527
|
| [3] |
Belishev M, Kurylev Y. To the reconstruction of a Riemannian manifold via its spectral data (BC-method). Comm. Partial Differential Equations, 1992, 17(5–6): 767-804
|
| [4] |
Bellassoued M, Choulli M, Dos Santos Ferreira D, Kian Y, Stefanov P. A Borg–Levinson theorem for magnetic Schrödinger operators on a Riemannian manifold. Ann. Inst. Fourier (Grenoble), 2021, 17(6): 2471-2517
|
| [5] |
Bellassoued M, Choulli M, Yamamoto M. Stability estimate for an inverse wave equation and a multidimensional Borg–Levinson theorem. J. Differential Equations, 2009, 247(2): 465-494
|
| [6] |
Bellassoued M, Choulli M, Yamamoto M. Stability estimate for a multidimensional inverse spectral problem with partial data. J. Math. Anal. Appl., 2011, 378(1): 184-197
|
| [7] |
Bellassoued M, Dos Santos Ferreira D. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Probl. Imaging, 2011, 5(4): 745-773
|
| [8] |
Burq N, Zuily C. A remark on quantitative unique continuation from subsets of the boundary of positive measure. Proc. Amer. Math. Soc., 2023, 151(9): 3903-3912
|
| [9] |
Choulli M. Inverse problems for Schrödinger equations with unbounded potentials, 2019arXiv:1909.11133
|
| [10] |
Choulli M., Uniqueness of continuation for semilinear elliptic equations. Partial Differ. Equ. Appl., 2024, 5(4): Paper No. 22, 14 pp.
|
| [11] |
Choulli M, Stefanov P. Stability for the multi-dimensional Borg–Levinson theorem with partial spectral data. Comm. Partial Differential Equations, 2013, 38(3): 455-476
|
| [12] |
Davey B., Quantitative unique continuation for Schrödinger operators. J. Funct. Anal., 2020, 279(4): Paper No. 108566, 23 pp.
|
| [13] |
Davey B, Zhu J. Quantitative uniqueness of solutions to second-order elliptic equations with singular lower order terms. Comm. Partial Differential Equations, 2019, 44(11): 1217-1251
|
| [14] |
Imanuvilov OYu, Yamamoto M. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Probl. Imaging, 2019, 13(6): 1213-1258
|
| [15] |
Isozaki H. Some remarks on the multi-dimensional Borg–Levinson theorem. J. Math. Kyoto Univ., 1991, 31(3): 743-753
|
| [16] |
Katchalov A, Kurylev Ya. Multidimensional inverse problem with incomplete boundary spectral data. Comm. Partial Differential Equations, 1998, 23(1–2): 55-95
|
| [17] |
Katchalov A, Kurylev Ya, Lassas M. Inverse Boundary Spectral Problems, 2001, Boca Raton, FL, Chapman & Hall/CRC123
|
| [18] |
Kavian O, Kian Y, Soccorsi E. Uniqueness and stability results for an inverse spectral problem in a periodic waveguide. J. Math. Pures Appl. (9), 2015, 104(6): 1160-1189
|
| [19] |
Kian Y. A multidimensional Borg–Levinson theorem for magnetic Schrödinger operators with partial spectral data. J. Spectr. Theory, 2018, 8(1): 235-269
|
| [20] |
Kian Y, Oksanen L, Morancey M. Application of the boundary control method to partial data Borg–Levinson inverse spectral problem. Math. Control Relat. Fields, 2019, 9(2): 289-312
|
| [21] |
Koch H, Tataru D. Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients. Comm. Pure Appl. Math., 2001, 54(3): 339-360
|
| [22] |
Laurent C., Léautaud M., Tunneling estimates and approximate controllability for hypoelliptic equations. Mem. Amer. Math. Soc., 2022, 276(1357): vi+95 pp.
|
| [23] |
Malinnikova E, Vessella S. Quantitative uniqueness for elliptic equations with singular lower order terms. Math. Ann., 2012, 353(4): 1157-1181
|
| [24] |
McLean W. Strongly Elliptic Systems and Boundary Integral Equations, 2000, Cambridge, Cambridge University Press
|
| [25] |
Nachman A, Sylvester J, Uhlmann G. An n-dimensional Borg–Levinson theorem. Comm. Math. Phys., 1988, 115(4): 595-605
|
| [26] |
Pohjola V. Multidimensional Borg–Levinson theorems for unbounded potentials. Asymptot. Anal., 2018, 110(3–4): 203-226
|
| [27] |
Ter Elst AFM, Ruddell K. An explicit bound for the Poincaré constant on a Lipschitz domain. Études opératorielles, 2017, Warsaw, Banach Center Publ., Polish Acad. Sci. Inst. Math.8797
|
RIGHTS & PERMISSIONS
Peking University