PDF
Abstract
In this paper, we discuss the structural information about 2-arc-transitive (non-bipartite and bipartite) graphs of product action type. It is proved that a 2-arc-transitive graph of product action type requires certain restrictions on either the vertex-stabilizers or the valency. Based on the existence of some equidistant linear codes, a construction is given for 2-arc-transitive graphs of non-diagonal product action type, which produces several families of such graphs. Besides, a nontrivial construction is given for 2-arc-transitive bipartite graphs of diagonal product action type.
Keywords
2-arc-transitive graph
/
locally primitive graph
/
quasiprimitive group
/
product action
/
equidistant linear code
Cite this article
Download citation ▾
Zaiping Lu.
On 2-arc-transitive Graphs of Product Action Type.
Frontiers of Mathematics 1-22 DOI:10.1007/s11464-024-0070-0
| [1] |
AschbacherMFinite Group Theory, 1986, Cambridge, Cambridge University Press10
|
| [2] |
BaddeleyR. Two-arc transitive graphs and twisted wreath products. J. Algebraic Combin., 1993, 2(3): 215-237
|
| [3] |
BiggsNLAlgebraic Graph Theory, 1974, Cambridge, Cambridge University Press 67
|
| [4] |
CameronPJ, MaimaniHR, OmidiGR, Tayfeh-RezaieB. 3-Designs from PSL(2,q). Discrete Math., 2006, 306(23): 3063-3073
|
| [5] |
ConwayJH, CurtisRT, NortonSP, ParkerRA, WilsonRA${\mathbb A}{\mathbb T}{\mathbb L}{\mathbb A}{\mathbb S}$ of Finite Groups, 1985, Eynsham, Oxford University Press
|
| [6] |
DixonDJ, MortimerBPermutation Groups, 1996, New York, Springer-Verlag163
|
| [7] |
FangXG, PraegerCE. Finite two-arc transitive graphs admitting a Suzuki simple group. Comm. Algebra, 1999, 27(8): 3727-3754
|
| [8] |
FangXG, PraegerCE. Finite two-arc transitive graphs admitting a Ree simple group. Comm. Algebra, 1999, 27(8): 3755-3769
|
| [9] |
GiudiciM, LiCH, PraegerCE. Analysing finite locally s-arc transitive graphs. Trans. Amer. Math. Soc., 2004, 356(1): 291-317
|
| [10] |
HassaniA, NochefrancaLR, PraegerCE. Two-arc transitive graphs admitting a two-dimensional projective linear group. J. Group Theory, 1999, 2(4): 335-353
|
| [11] |
HirschfeldJWPProjective Geometries over Finite Fields, 1998SecondNew York, The Clarendon Press
|
| [12] |
HuppertBEndliche Gruppen I, 1967, Berlin, New York, Springer-Verlag
|
| [13] |
IvanovAA, PraegerCE. On finite affine 2-arc transitive graph. European J. Combin., 1993, 14(5): 421-444
|
| [14] |
LiCH, LuZP, WangGX. Arc-transitive graphs of square-free order and small valency. Discrete Math., 2016, 339(12): 2907-2918
|
| [15] |
LiCH, SeressÁ. Constructions of quasiprimitive two-arc transitive graphs of product action type. Finite Geometries, Groups, and Computation, 2006, Berlin, Walter de Gruyter: 115-123
|
| [16] |
LiebeckMW, PraegerCE, SaxlJ. A classification of the maximal subgroups of the finite alternating group and symmetric groups. J. Algebra, 1987, 111(2): 365-383
|
| [17] |
LuZP, SongRY. On basic 2-arc-transitive graphs. J. Algebraic Combin., 2023, 58(4): 1081-1093
|
| [18] |
PraegerCE. An O’Nan–Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. London Math. Soc. (2), 1993, 47(2): 227-239
|
| [19] |
PraegerCE. On a reduction theorem for finite, bipartite 2-arc-transitive graphs. Australas. J. Combin., 1993, 7: 21-36
|
| [20] |
PraegerCE. Finite quasiprimitive graphs. Surveys in Combinatorics, 1997, Cambridge, Cambridge University Press: 65-85241
|
| [21] |
PraegerCE, SchneiderCPermutation Groups and Cartesian Decompositions, 2018, Cambridge, Cambridge University Press 449
|
| [22] |
The GAP GroupGAP—Groups, Algorithms, and Programming, Version 4.14.0, 2024
|
| [23] |
WeissR. s-transitive graphs. Algebraic Methods in Graph Theory, Vol. I, II (Szeged, 1978), 1981, Amsterdam–New York, North-Holland: 827-84725
|
| [24] |
ZsigmondyK. Zur Theorie der Potenzreste. Monatsh. Math. Phys., 1892, 3(1): 265-284
|
RIGHTS & PERMISSIONS
Peking University