On 2-arc-transitive Graphs of Product Action Type

Zaiping Lu

Frontiers of Mathematics ›› : 1 -22.

PDF
Frontiers of Mathematics ›› : 1 -22. DOI: 10.1007/s11464-024-0070-0
Research Article

On 2-arc-transitive Graphs of Product Action Type

Author information +
History +
PDF

Abstract

In this paper, we discuss the structural information about 2-arc-transitive (non-bipartite and bipartite) graphs of product action type. It is proved that a 2-arc-transitive graph of product action type requires certain restrictions on either the vertex-stabilizers or the valency. Based on the existence of some equidistant linear codes, a construction is given for 2-arc-transitive graphs of non-diagonal product action type, which produces several families of such graphs. Besides, a nontrivial construction is given for 2-arc-transitive bipartite graphs of diagonal product action type.

Keywords

2-arc-transitive graph / locally primitive graph / quasiprimitive group / product action / equidistant linear code

Cite this article

Download citation ▾
Zaiping Lu. On 2-arc-transitive Graphs of Product Action Type. Frontiers of Mathematics 1-22 DOI:10.1007/s11464-024-0070-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AschbacherMFinite Group Theory, 1986, Cambridge, Cambridge University Press10

[2]

BaddeleyR. Two-arc transitive graphs and twisted wreath products. J. Algebraic Combin., 1993, 2(3): 215-237

[3]

BiggsNLAlgebraic Graph Theory, 1974, Cambridge, Cambridge University Press 67

[4]

CameronPJ, MaimaniHR, OmidiGR, Tayfeh-RezaieB. 3-Designs from PSL(2,q). Discrete Math., 2006, 306(23): 3063-3073

[5]

ConwayJH, CurtisRT, NortonSP, ParkerRA, WilsonRA${\mathbb A}{\mathbb T}{\mathbb L}{\mathbb A}{\mathbb S}$ of Finite Groups, 1985, Eynsham, Oxford University Press

[6]

DixonDJ, MortimerBPermutation Groups, 1996, New York, Springer-Verlag163

[7]

FangXG, PraegerCE. Finite two-arc transitive graphs admitting a Suzuki simple group. Comm. Algebra, 1999, 27(8): 3727-3754

[8]

FangXG, PraegerCE. Finite two-arc transitive graphs admitting a Ree simple group. Comm. Algebra, 1999, 27(8): 3755-3769

[9]

GiudiciM, LiCH, PraegerCE. Analysing finite locally s-arc transitive graphs. Trans. Amer. Math. Soc., 2004, 356(1): 291-317

[10]

HassaniA, NochefrancaLR, PraegerCE. Two-arc transitive graphs admitting a two-dimensional projective linear group. J. Group Theory, 1999, 2(4): 335-353

[11]

HirschfeldJWPProjective Geometries over Finite Fields, 1998SecondNew York, The Clarendon Press

[12]

HuppertBEndliche Gruppen I, 1967, Berlin, New York, Springer-Verlag

[13]

IvanovAA, PraegerCE. On finite affine 2-arc transitive graph. European J. Combin., 1993, 14(5): 421-444

[14]

LiCH, LuZP, WangGX. Arc-transitive graphs of square-free order and small valency. Discrete Math., 2016, 339(12): 2907-2918

[15]

LiCH, SeressÁ. Constructions of quasiprimitive two-arc transitive graphs of product action type. Finite Geometries, Groups, and Computation, 2006, Berlin, Walter de Gruyter: 115-123

[16]

LiebeckMW, PraegerCE, SaxlJ. A classification of the maximal subgroups of the finite alternating group and symmetric groups. J. Algebra, 1987, 111(2): 365-383

[17]

LuZP, SongRY. On basic 2-arc-transitive graphs. J. Algebraic Combin., 2023, 58(4): 1081-1093

[18]

PraegerCE. An O’Nan–Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. London Math. Soc. (2), 1993, 47(2): 227-239

[19]

PraegerCE. On a reduction theorem for finite, bipartite 2-arc-transitive graphs. Australas. J. Combin., 1993, 7: 21-36

[20]

PraegerCE. Finite quasiprimitive graphs. Surveys in Combinatorics, 1997, Cambridge, Cambridge University Press: 65-85241

[21]

PraegerCE, SchneiderCPermutation Groups and Cartesian Decompositions, 2018, Cambridge, Cambridge University Press 449

[22]

The GAP GroupGAP—Groups, Algorithms, and Programming, Version 4.14.0, 2024

[23]

WeissR. s-transitive graphs. Algebraic Methods in Graph Theory, Vol. I, II (Szeged, 1978), 1981, Amsterdam–New York, North-Holland: 827-84725

[24]

ZsigmondyK. Zur Theorie der Potenzreste. Monatsh. Math. Phys., 1892, 3(1): 265-284

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/