PDF
Abstract
In this paper, we discuss the structural information about 2-arc-transitive (non-bipartite and bipartite) graphs of product action type. It is proved that a 2-arc-transitive graph of product action type requires certain restrictions on either the vertex-stabilizers or the valency. Based on the existence of some equidistant linear codes, a construction is given for 2-arc-transitive graphs of non-diagonal product action type, which produces several families of such graphs. Besides, a nontrivial construction is given for 2-arc-transitive bipartite graphs of diagonal product action type.
Keywords
2-arc-transitive graph
/
locally primitive graph
/
quasiprimitive group
/
product action
/
equidistant linear code
Cite this article
Download citation ▾
Zaiping Lu.
On 2-arc-transitive Graphs of Product Action Type.
Frontiers of Mathematics 1-22 DOI:10.1007/s11464-024-0070-0
| [1] |
AschbacherMFinite Group Theory, 1986, Cambridge, Cambridge University Press10
|
| [2] |
BaddeleyR. Two-arc transitive graphs and twisted wreath products. J. Algebraic Combin., 1993, 2(3): 215-237
|
| [3] |
BiggsNLAlgebraic Graph Theory, 1974, Cambridge, Cambridge University Press 67
|
| [4] |
CameronPJ, MaimaniHR, OmidiGR, Tayfeh-RezaieB. 3-Designs from PSL(2,q). Discrete Math., 2006, 306(23): 3063-3073
|
| [5] |
ConwayJH, CurtisRT, NortonSP, ParkerRA, WilsonRA${\mathbb A}{\mathbb T}{\mathbb L}{\mathbb A}{\mathbb S}$ of Finite Groups, 1985, Eynsham, Oxford University Press
|
| [6] |
DixonDJ, MortimerBPermutation Groups, 1996, New York, Springer-Verlag163
|
| [7] |
FangXG, PraegerCE. Finite two-arc transitive graphs admitting a Suzuki simple group. Comm. Algebra, 1999, 27(8): 3727-3754
|
| [8] |
FangXG, PraegerCE. Finite two-arc transitive graphs admitting a Ree simple group. Comm. Algebra, 1999, 27(8): 3755-3769
|
| [9] |
GiudiciM, LiCH, PraegerCE. Analysing finite locally s-arc transitive graphs. Trans. Amer. Math. Soc., 2004, 356(1): 291-317
|
| [10] |
HassaniA, NochefrancaLR, PraegerCE. Two-arc transitive graphs admitting a two-dimensional projective linear group. J. Group Theory, 1999, 2(4): 335-353
|
| [11] |
HirschfeldJWPProjective Geometries over Finite Fields, 1998SecondNew York, The Clarendon Press
|
| [12] |
HuppertBEndliche Gruppen I, 1967, Berlin, New York, Springer-Verlag
|
| [13] |
IvanovAA, PraegerCE. On finite affine 2-arc transitive graph. European J. Combin., 1993, 14(5): 421-444
|
| [14] |
LiCH, LuZP, WangGX. Arc-transitive graphs of square-free order and small valency. Discrete Math., 2016, 339(12): 2907-2918
|
| [15] |
LiCH, SeressÁ. Constructions of quasiprimitive two-arc transitive graphs of product action type. Finite Geometries, Groups, and Computation, 2006, Berlin, Walter de Gruyter: 115-123
|
| [16] |
LiebeckMW, PraegerCE, SaxlJ. A classification of the maximal subgroups of the finite alternating group and symmetric groups. J. Algebra, 1987, 111(2): 365-383
|
| [17] |
LuZP, SongRY. On basic 2-arc-transitive graphs. J. Algebraic Combin., 2023, 58(4): 1081-1093
|
| [18] |
PraegerCE. An O’Nan–Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. London Math. Soc. (2), 1993, 47(2): 227-239
|
| [19] |
PraegerCE. On a reduction theorem for finite, bipartite 2-arc-transitive graphs. Australas. J. Combin., 1993, 7: 21-36
|
| [20] |
PraegerCE. Finite quasiprimitive graphs. Surveys in Combinatorics, 1997, Cambridge, Cambridge University Press: 65-85241
|
| [21] |
PraegerCE, SchneiderCPermutation Groups and Cartesian Decompositions, 2018, Cambridge, Cambridge University Press 449
|
| [22] |
The GAP GroupGAP—Groups, Algorithms, and Programming, Version 4.14.0, 2024
|
| [23] |
WeissR. s-transitive graphs. Algebraic Methods in Graph Theory, Vol. I, II (Szeged, 1978), 1981, Amsterdam–New York, North-Holland: 827-84725
|
| [24] |
ZsigmondyK. Zur Theorie der Potenzreste. Monatsh. Math. Phys., 1892, 3(1): 265-284
|
RIGHTS & PERMISSIONS
Peking University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.