Marcinkiewicz Integrals Associated with Schrödinger Operator on Campanato Type Spaces

Qingying Xue , Jiali Yu

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (6) : 1201 -1237.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (6) :1201 -1237. DOI: 10.1007/s11464-024-0062-0
Research Article
research-article

Marcinkiewicz Integrals Associated with Schrödinger Operator on Campanato Type Spaces

Author information +
History +
PDF

Abstract

The boundedness of the Marcinkiewicz integrals associated with Schrödinger operator from the localized Morrey-Campanato space to the localized Morrey-Campanato-BLO space is established. Similar results for the Marcinkiewicz integrals associated with the Schrödinger operator with rough kernels were also investigated.

Keywords

Marcinkiewicz integral / Schrödinger operator / Localized Morrey-Campanato space / Localized Morrey-Campanato-BLO space / Dini condition / 42B20 / 42B25

Cite this article

Download citation ▾
Qingying Xue, Jiali Yu. Marcinkiewicz Integrals Associated with Schrödinger Operator on Campanato Type Spaces. Frontiers of Mathematics, 2025, 20(6): 1201-1237 DOI:10.1007/s11464-024-0062-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akbulut A, Kuzu O. Marcinkiewicz integrals with rough kernel associated with Schrödinger operator on vanishing generalized Morrey spaces. Azerb. J. Math., 2014, 4(1): 40-54

[2]

Al-Salman A, Al-Qassem H, Cheng C, Pan Y. Lp bounds for the function of Marcinkiewicz. Math. Res. Lett., 2002, 9(5–6): 697-700

[3]

Benedek A, Calderón A, Panzone R. Convolution operators on Banach space valued functions. Proc. Nat. Acad. Sci. U.S.A., 1962, 48: 356-365

[4]

Bennett C. Another Characterization of BLO. Proc. Amer. Math. Soc., 1982, 85(4): 552-556

[5]

Bongioanni B, Harboure E, Salinas O. Riesz transforms related to Schrödinger operators acting on BMO type spaces. J. Math. Anal. Appl., 2009, 357(1): 115-131

[6]

Campanato S. Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 1963, 17: 175-188

[7]

Christ M. Weak type (1, 1) bounds for rough operators. Ann. of Math. (2), 1988, 128(1): 19-42

[8]

Coifman R, Rochberg R. Another Characterization of BMO. Proc. Amer. Math. Soc., 1980, 79(2): 249-254

[9]

Coifman R, Weiss G. Analyse Harmonique Non-commutative sur Certains Espaces Homogènes—Étude de Certaines Intégrales Singulières, 1971, Berlin, Springer-Verlag

[10]

Coifman R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc., 1977, 83(4): 569-645

[11]

Ding Y, Fan D, Pan Y. Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernels. Acta Math. Sin. (Engl. Ser.), 2000, 16(4): 593-600

[12]

Ding Y, Lan S, Xue Q, Yabuta K. The existence and boundedness of multilinear Marcinkiewicz integrals on Companato spaces. Sci. Sin. Math., 2018, 48(10): 1267-1288 in Chinese)

[13]

Ding Y, Lu S, Xue Q. On Marcinkiewicz integral with homogeneous kernels. J. Math. Anal. Appl., 2000, 245(2): 471-488

[14]

Ding Y, Lu S, Xue Q. Marcinkiewicz integral on Hardy spaces. Integral Equations Operator Theory, 2002, 42(2): 174-182

[15]

Dong J., Huang J., Liu H., Boundedness of singular integrals on Hardy type spaces associated with Schrödinger operators. J. Funct. Spaces, 2015, 2015: Art. ID 409215, 11 pp.

[16]

Duong X, Yan L. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Amer. Math. Soc., 2005, 18(4): 943-973

[17]

Duong X, Yan L. New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications. Comm. Pure Appl. Math., 2005, 58(10): 1375-1420

[18]

Dziubański J, Garrigós G, Martínez T, Torrea J, Zienkiewicz J. BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z., 2005, 249(2): 329-356

[19]

Dziubański J, Zienkiewicz J. Hardy space H1 associated to Schrödinger operators with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoamericana, 1999, 15(2): 279-296

[20]

Dziubański J, Zienkiewicz J. Hp spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloq. Math., 2003, 98(1): 5-38

[21]

Fan D, Sato S. Weak type (1, 1) estimates for Marcinkiewicz integrals with rough kernels. Tohoku Math. J. (2), 2001, 53(2): 265-284

[22]

Fefferman C. The uncertainty principle. Bull. Amer. Math. Soc. (N.S.), 1983, 9(2): 129-206

[23]

Fu Z, Gong R, Pozzi E, Wu Q. Cauchy-Szegö commutators on weighted Morrey spaces. Math. Nachr., 2023, 296(5): 1859-1885

[24]

Fu Z, Lu S, Shi S. Two characterizations of central BMO space via the commutators of Hardy operators. Forum Math., 2021, 33(2): 505-529

[25]

Gao W, Jiang Y, Tang L. BLO type space associated with a Schrödinger operator. Acta Math. Sinica (Chinese Ser.), 2009, 52(6): 1101-1110

[26]

Gao W, Tang L. Boundedness for Marcinkiewicz integrals associated with Schrödinger operators. Proc. Indian Acad. Sci. Math. Sci., 2014, 124(2): 193-203

[27]

Gao W., Tang L., BLO estimates for Marcinkiewicz integrals associated with Schrödinger operators. Proc. Indian Acad. Sci. Math. Sci., 2019, 129 (5): Paper No. 74, 10 pp.

[28]

Gehring F. The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math., 1973, 130: 265-277

[29]

Han Y. Some properties of s-function and Marcinkiewicz integrals. Acta Sci. Nat. Univ. Pekin., 1987, 23(5): 21-34

[30]

Hu G, Meng Y, Yang D. Estimates for Marcinkiewicz integrals in BMO and Campanato spaces. Glasg. Math. J., 2007, 49(2): 167-187

[31]

Kurtz D, Wheeden L. Results on weighted norm inequalities for multipliers. Trans. Amer. Math. Soc., 1979, 255: 343-362

[32]

Lin H, Nakai E, Yang D. Boundedness of Lusin-area and g*λ functions on localized Morrey-Campanato spaces over doubling metric measure spaces. J. Funct. Spaces Appl., 2011, 9(3): 245-282

[33]

Liu F, Fu Z, Jhang S. Boundedness and continuity of Marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces. Front. Math. China, 2019, 14(1): 95-122

[34]

Qiu S. Boundedness of Littlewood-Paley operators and Marcinkiewicz integral on εα,p. J. Math. Res. Exposition, 1992, 12(1): 41-50

[35]

Shen Z. Lp estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble), 1995, 45(2): 513-546

[36]

Shi S, Lu S. Characterization of the central Campanato space via the commutator operator of Hardy type. J. Math. Anal. Appl., 2015, 429(2): 713-732

[37]

Shi S, Xue Q, Yabuta K. On the Boundedness of multilinear Littlewood-Paley g*λ function. J. Math. Pures Appl. (9), 2014, 101(3): 394-413

[38]

Stein E. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans. Amer. Math. Soc., 1958, 88: 430-466

[39]

Stein E. Harmonic Analysis—Real-variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton, NJ, Princeton University PressVol. 43

[40]

Torchinsky A, Wang S. A note on the Marcinkiewicz integral. Colloq. Math., 1990, 60/61(1): 235-243

[41]

Walsh T. On the function of Marcinkiewicz. Studia Math., 1972, 44: 203-217

[42]

Xu H, Chen J, Ying Y. A note on Marcinkiewicz integrals with H1 kernels. Acta Math. Sci. Ser. B (Engl. Ed.), 2003, 23(1): 133-138

[43]

Yabuta K. Boundedness of Littlewood-Paley operators. Math. Japon., 1996, 43(1): 143-150

[44]

Yang D, Yang D, Zhou Y. Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators. Potential Anal., 2009, 30(3): 271-300

[45]

Yang D, Yang D, Zhou Y. Localized BMO and BLO spaces on RD-spaces and applications to Schrödinger operators. Commun. Pure Appl. Anal., 2010, 9(3): 779-812

[46]

Yang D, Yang D, Zhou Y. Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrödinger operators. Nagoya Math. J., 2010, 198: 77-119

[47]

Zhang J., He Q., Xue Q., On weighted boundedness and compactness of commutators of Marcinkiewicz integral associated with Schrödinger operators. Ann. Funct. Anal., 2023, 14 (3): Paper No. 59, 31 pp.

[48]

Zhong J. The Sobolev estimates for some Schrödinger type operators. Math. Sci. Res. Hot-Line, 1999, 3(8): 1-48

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/