Global Solutions for the Defocusing Cubic Nonlinear Schrödinger Equations on 2-sphere

Fanfei Meng , Haigen Wu

Frontiers of Mathematics ›› : 1 -62.

PDF
Frontiers of Mathematics ›› : 1 -62. DOI: 10.1007/s11464-024-0061-1
Research Article
research-article

Global Solutions for the Defocusing Cubic Nonlinear Schrödinger Equations on 2-sphere

Author information +
History +
PDF

Abstract

Liouville’s theorem, a landmark in ergodic theory, states that Lebesgue measure is invariant under the flow of Hamiltonian system. In this paper, we obtain a global existence of solutions for the defocusing cubic nonlinear Schrödinger equations on 2-sphere with initial data distributed according to Gibbs measure, which is invariant in some mild sense under the flow of Wick renormalized Hamiltonian. After modulating the manifold, we also improve the regularity of support space of Gibbs measure and establish the almost sure global well-posedness.

Keywords

Gibbs measure / Wick ordered Hamiltonian / almost sure global well-posedness / 35Q55 / 37L40 / 58J70

Cite this article

Download citation ▾
Fanfei Meng, Haigen Wu. Global Solutions for the Defocusing Cubic Nonlinear Schrödinger Equations on 2-sphere. Frontiers of Mathematics 1-62 DOI:10.1007/s11464-024-0061-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlbeverioS, CruzeiroA. Global flows with invariant (Gibbs) measures for Euler and Navier–Stokes two-dimensional fluids. Comm. Math. Phys., 1990, 129(3): 431-444

[2]

BanicaV. On the nonlinear Schrödinger dynamics on ${\mathbb S}^{2}$. J. Math. Pures Appl. (9), 2004, 83(1): 77-98

[3]

Ben AbdallahN, MéhatsF, SchmeiserC, WeishäuplRM. The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential. SIAM J. Math. Anal., 2005, 37(1): 189-199

[4]

BetounesDDifferential Equations—Theory and Applications, 2010SecondNew York. Springer.

[5]

BourgainJ. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I. Schröodinger equations. Geom. Funct. Anal., 1993, 3(2): 107-156

[6]

BourgainJ. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, II. The KdV-equation. Geom. Funct. Anal., 1993, 3(3): 209-262

[7]

BourgainJ. Periodic nonlinear Schröodinger equation and invariant measures. Comm. Math. Phys., 1994, 166(1): 1-26

[8]

BourgainJ. Invariant measures for the 2D-defocusing nonlinear Schröodinger equation. Comm. Math. Phys., 1996, 176: 421-445

[9]

BourgainJGlobal Solutions of Nonlinear Schröodinger Equations, 1999, Providence, RI. American Mathematical Society. 46

[10]

BoydRWNonlinear Optics, 2008ThirdAmsterdam. Elsevier/Academic Press.

[11]

BunimovichLA, CornfeldIP, DobrushinRL, JakobsonMV, MaslovaNB, PesinYaB, SinaǐYaG, SukhovYuM, VershikAMDynamical Systems, II—Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics, 1989, Berlin. Springer-Verlag.

[12]

BurqN, GérardP, TzvetkovN. An instability property of the nonlinear Schrödinger equation on ${\mathbb S}^{d}$. Math. Res. Lett., 2002, 9(2–3): 323-335

[13]

BurqN, GérardP, TzvetkovN. Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math., 2004, 126(3): 569-605

[14]

BurqN, GérardP, TzvetkovN. Bilinear eigenfunction estimates and the nonlinear Schröodinger equation on surfaces. Invent. Math., 2005, 159(1): 187-223

[15]

BurqN, GérardP, TzvetkovN. Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations. Ann. Sci. Ecole Norm. Sup. (4), 2005, 38(2): 355-301

[16]

BurqN, GérardP, TzvetkovN. High frequency solutions of the nonlinear Schrödinger equation on surfaces. Quart. Appl. Math., 2010, 68(1): 61-71

[17]

BurqN, ThomannL, TzvetkovN. Remarks on the Gibbs measures for nonlinear dispersive equations. Ann. Fac. Sci. Toulouse Math. (6), 2018, 27(3): 527-597

[18]

BurqN, TzvetkovN. Random data Cauchy theory for supercritical wave equations, I. Local theory. Invent. Math., 2008, 173(3): 449-475

[19]

BurqN, TzvetkovN. Random data Cauchy theory for supercritical wave equations, II. A global existence result. Invent. Math., 2008, 173(3): 477-496

[20]

Da PratoG, DebusscheA. Two-dimensional Navier–Stokes equations driven by a spacetime white noise. J. Funct. Anal., 2002, 196(1): 180-210

[21]

EfthimiouC, FryeCSpherical Harmonics in p Dimensions, 2014, Hackensack, NJ. World Scientific Publishing Co. Pte. Ltd..

[22]

ErdosL, SchleinB, YauH-T. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math., 2007, 167(3): 515-614

[23]

GérardP. Nonlinear Schrödinger equations on compact manifolds. European Congress of Mathematics, 2005, Zürich. Eur. Math. Soc.. 121139

[24]

GérardP, PierfeliceV. Nonlinear Schrödinger equation on four-dimensional compact manifolds. Bull. Soc. Math. France, 2010, 138(1): 119-151

[25]

GlimmJ, JaffeAQuantum Physics—A Functional Integral Point of View, 1987SecondNew York. Springer-Verlag.

[26]

ImekrazR, RobertD, ThomannL. On random Hermite series. Trans. Amer. Math. Soc., 2016, 368(4): 2763-2792

[27]

KryloffN, BogoliouboffN. La théorie générale de la mesure dans son application a l’etude de systemes dynamiques de la mécanique non-linéaire. Ann. of Math. (2), 1937, 38(1): 65-113

[28]

LebowitzJL, RoseHA, SpeerER. Statistical mechanics of the nonlinear Schröodinger equation. J. Statist. Phys., 1988, 50(3–4): 657-687

[29]

LiveraniC. Invariant measures and their properties—A functional analytic point of view. Dynamical Systems, Part II, 2003, Pisa. Scuola Norm. Sup.. 185237

[30]

NelsonE. A quartic interaction in two dimensions. Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, MA, 1965), 1966, Cambridge, MA. MIT Press. 6973

[31]

NemytskiiVV, StepanovVVQualitative Theory of Differential Equations, 1960, Princeton, NJ. Princeton University Press.

[32]

NualartDThe Malliavin Calculus and Related Topics, 2006SecondBerlin. Springer-Verlag.

[33]

OhT, QuastelJ. On the Cameron–Martin theorem and almost-sure global existence. Proc. Edinb. Math. Soc. (2), 2016, 59(2): 483-501

[34]

Oh T., Seong K., Tolomeo L., A remark on Gibbs measures with log-correlated Gaussian fields. Forum Math. Sigma, 2024, 12: Paper No. e50, 40 pp.

[35]

OhT, ThomannL. A pedestrian approach to the invariant Gibbs measures for the 2 — d defocusing nonlinear Schrödinger equations. Stoch. Partial Differ. Equ. Anal. Comput., 2018, 6(3): 397-445

[36]

OhT, TzvetkovN. Quasi-invariant Gaussian measures for the two-dimensional defocusing cubic nonlinear wave equation. J. Eur. Math. Soc. (JEMS), 2020, 22(6): 1785-1826

[37]

ParryWTopics in Ergodic Theory, 1981, Cambridge–New York. Cambridge University Press. 75

[38]

PetersenKErgodic Theory, 1983, Cambridge. Cambridge University Press. 2

[39]

PetersenKLectures on ergodic theory, 1997

[40]

RichardFBStochastic Processes, 2011, Cambridge. Cambridge University Press. 33

[41]

SimonBThe P(Φ)2 Euclidean (Quantum) Field Theory, 1974, Princeton, NJ. Princeton University Press.

[42]

SulemC, SulemP-LThe Nonlinear Schrödinger Equation—Self-focusing and wave collapse, 1999, New York. Springer-Verlag. 139

[43]

SzegöG. Inequalities for the zeros of Legendre polynomials and related functions. Trans. Amer. Math. Soc., 1936, 39(1): 1-17

[44]

TaoT254A, Ergodic theory, 2008

[45]

ThomannLInvariant Gibbs measures for dispersive PDEs, 2018

[46]

TzvetkovN. Construction of a Gibbs measure associated to the periodic Benjamin–Ono equation. Probab. Theory Related Fields, 2010, 146(3–4): 481-514

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/