Quantum Mean-field Limit to the Compressible Fluids

Shunlin Shen , Jiahao Wu

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 721 -752.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 721 -752. DOI: 10.1007/s11464-024-0043-3
Research Article

Quantum Mean-field Limit to the Compressible Fluids

Author information +
History +
PDF

Abstract

We study the three dimensional quantum many-body dynamics with a delta-type potential N3β V(N β x) and a Coulomb potential. As the particle number N tends to infinity and the Planck’s constant ħ tends to zero independently, we prove the weak convergence of the quantum mass and momentum densities to the Euler–Poisson equation with the pressure before its blow-up time. The proof is based on the modulated energy method in the setting of the quantum many-body dynamics, for which the key is a quantum functional inequality according to the interaction potentials. In Golse–Paul [Comm. Pure Appl. Math., 2022, 75(6): 1332–1376], the functional inequality for the Coulomb potential is achieved based on Serfaty’s inequality [Duke Math. J., 2020, 169(15): 2887–2935]. In the mean-field regime

β ( 0 , 1 3 )
, we prove the quantum functional inequality for the delta-type potential under technical profile assumptions on the potential V(x).

Keywords

Euler–Poisson equations / quantum many-body dynamics / modulated energy / functional inequality

Cite this article

Download citation ▾
Shunlin Shen, Jiahao Wu. Quantum Mean-field Limit to the Compressible Fluids. Frontiers of Mathematics, 2025, 20(4): 721-752 DOI:10.1007/s11464-024-0043-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdamiR, GolseF, TetaA. Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys., 2007, 127(6): 1193-1220

[2]

BrenierY. Convergence of the Vlasov–Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations, 2000, 25(3–4): 737-754

[3]

CarlesR. WKB analysis for nonlinear Schrödinger equations with potential. Comm. Math. Phys., 2007, 269(1): 195-221

[4]

CarlesR Semi-classical Analysis for Nonlinear Schrödinger Equations, 2008 Hackensack, NJ World Scientific Publishing Co. Pte. Ltd.

[5]

ChenT, HainzlC, PavlovićN, SeiringerR. Unconditional uniqueness for the cubic Gross–Pitaevskii hierarchy via quantum de Finetti. Comm. Pure Appl. Math., 2015, 68(10): 1845-1884

[6]

ChenT, PavlovićN. On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies. Discrete Contin. Dyn. Syst., 2010, 27(2): 715-739

[7]

ChenT, PavlovićN. The quintic NLS as the mean field limit of a boson gas with three-body interactions. J. Funct. Anal., 2011, 260(4): 959-997

[8]

ChenT, PavlovićN. A new proof of existence of solutions for focusing and defocusing Gross–Pitaevskii hierarchies. Proc. Amer. Math. Soc., 2013, 141(1): 279-293

[9]

ChenT, PavlovićN. Higher order energy conservation and global well-posedness of solutions for Gross–Pitaevskii hierarchies. Comm. Partial Differential Equations, 2014, 39(9): 1597-1634

[10]

ChenT, PavlovićN. Derivation of the cubic NLS and Gross–Pitaevskii hierarchy from manybody dynamics in d = 3 based on spacetime norms. Ann. Henri Poincaré, 2014, 15(3): 543-588

[11]

ChenT, PavlovićN, TzirakisN. Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 2010, 27(5): 1271-1290

[12]

ChenX. Collapsing estimates and the rigorous derivation of the 2d cubic nonlinear Schrödinger equation with anisotropic switchable quadratic traps. J. Math. Pures Appl. (9), 2012, 98(4): 450-478

[13]

ChenX. On the rigorous derivation of the 3D cubic nonlinear Schrödinger equation with a quadratic trap. Arch. Ration. Mech. Anal., 2013, 210(2): 365-408

[14]

ChenX, HolmerJ. On the rigorous derivation of the 2D cubic nonlinear Schrödinger equation from 3D quantum many-body dynamics, Arch. Ration. Mech. Anal., 2013, 210(3): 909-954

[15]

ChenX, HolmerJ. On the Klainerman–Machedon conjecture for the quantum BBGKY hierarchy with self-interaction. J. Eur. Math. Soc. (JEMS), 2016, 18(6): 1161-1200

[16]

ChenX, HolmerJ. Correlation structures, many-body scattering processes, and the derivation of the Gross–Pitaevskii hierarchy. Int. Math. Res. Not. IMRN, 2016, 2016(10): 3051-3110

[17]

ChenX, HolmerJ. Focusing quantum many-body dynamics: the rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation. Arch. Ration. Mech. Anal., 2016, 221(2): 631-676

[18]

ChenX, HolmerJ. Focusing quantum many-body dynamics, II: The rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation from 3D. Anal. PDE, 2017, 10(3): 589-633

[19]

ChenX, HolmerJ. The derivation of the T 3 \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{T}^{3}$$\end{document} energy-critical NLS from quantum many-body dynamics. Invent. Math., 2019, 217(2): 433-547

[20]

Chen X., Holmer J., Quantitative derivation and scattering of the 3D cubic NLS in the energy space. Ann. PDE, 2022, 8 (2): Paper No. 11, 39 pp.

[21]

Chen X., Holmer J., Unconditional uniqueness for the energy-critical nonlinear Schrödinger equation on T 4 \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{T}^{4}$$\end{document}. Forum Math. Pi, 2022, 10: Paper No. e3, 49 pp.

[22]

ChenX, ShenS, WuJ, ZhangZ. The derivation of the compressible Euler equation from quantum many-body dynamics. Peking Math. J., 2024, 7(1): 35-90

[23]

Chen X., Shen S., Zhang Z., The unconditional uniqueness for the energy-supercritical NLS. Ann. PDE, 2022, 8 (2): Paper No. 14, 82 pp.

[24]

Chen X., Shen S., Zhang Z., On the mean-field and semiclassical limit from quantum N-body dynamics. 2023, arXiv:2304.03447

[25]

ChenX, ShenS, ZhangZ. Quantitative derivation of the Euler–Poisson equation from quantum many-body dynamics. Peking Math. J., 2024, 7(2): 643-711

[26]

ChenX, SmithP. On the unconditional uniqueness of solutions to the infinite radial Chern–Simons–Schrödinger hierarchy. Anal. PDE, 2014, 7(7): 1683-1712

[27]

DuerinckxM. Mean-field limits for some Riesz interaction gradient flows. SIAM J. Math. Anal., 2016, 48(3): 2269-2300

[28]

ErdősL, SchleinB, YauH-T. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math., 2007, 167(3): 515-614

[29]

ErdősL, SchleinB, YauH-T. Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Amer. Math. Soc., 2009, 22(4): 1099-1156

[30]

ErdősL, SchleinB, YauH-T. Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. of Math. (2), 2010, 172(1): 291-370

[31]

GolseF, PaulT. Mean-field and classical limit for the N-body quantum dynamics with Coulomb interaction. Comm. Pure Appl. Math., 2022, 75(6): 1332-1376

[32]

GrenierE. Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Amer. Math. Soc., 1998, 126(2): 523-530

[33]

GressmanP, SohingerV, StaffilaniG. On the uniqueness of solutions to the periodic 3D Gross–Pitaevskii hierarchy. J. Funct. Anal., 2014, 266(7): 4705-4764

[34]

HerrS, SohingerV. The Gross–Pitaevskii hierarchy on general rectangular tori. Arch. Ration. Mech. Anal., 2016, 220(3): 1119-1158

[35]

Herr S., Sohinger V., Unconditional uniqueness results for the nonlinear Schrödinger equation. Commun. Contemp. Math., 2019, 21 (7): Paper No. 1850058, 33 pp.

[36]

HongY, TaliaferroK, XieZ. Unconditional uniqueness of the cubic Gross–Pitaevskii hierarchy with low regularity. SIAM J. Math. Anal., 2015, 47(5): 3314-3341

[37]

HongY, TaliaferroK, XieZ. Uniqueness of solutions to the 3D quintic Gross–Pitaevskii hierarchy. J. Funct. Anal., 2016, 270(1): 34-67

[38]

JinS, LevermoreD C, McLaughlinDW. The semiclassical limit of the defocusing NLS hierarchy. Comm. Pure Appl. Math., 1999, 52(5): 613-654

[39]

KirkpatrickK, SchleinB, StaffilaniG. Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics. Amer. J. Math., 2011, 133(1): 91-130

[40]

KlainermanS, MachedonM. On the uniqueness of solutions to the Gross–Pitaevskii hierarchy. Comm. Math. Phys., 2008, 279(1): 169-185

[41]

LinF, ZhangP. Semiclassical limit of the Gross–Pitaevskii equation in an exterior domain. Arch. Ration. Mech. Anal., 2006, 179(1): 79-107

[42]

MadelungE. Quantentheorie in hydrodynamischer form. Zeitschrift für Physik, 1927, 40(3): 322-326

[43]

MajdaAJ Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, 1984 New York Springer-Verlag

[44]

MalliavinP Integration and Probability, 1995 New York Springer-Verlag 157

[45]

OelschlägerK. On the connection between Hamiltonian many-particle systems and the hydrodynamical equations. Arch. Rational Mech. Anal., 1991, 115(4): 297-310

[46]

Porat I.B., Derivation of Euler’s equations of perfect fluids from von Neumann’s equation with magnetic field. J. Stat. Phys., 2023, 190 (7): Paper No. 121, 44 pp.

[47]

Rosenzweig M., From quantum many-body systems to ideal fluids. 2021, arXiv:2110.04195

[48]

SerfatyS. Mean field limits of the Gross–Pitaevskii and parabolic Ginzburg–Landau equations. J. Amer. Math. Soc., 2017, 30(3): 713-768

[49]

SerfatyS. Mean field limit for Coulomb-type flows. Duke Math. J., 2020, 169(15): 2887-2935

[50]

Shen S., The rigorous derivation of the T 2 \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{T}^{2}$$\end{document} focusing cubic NLS from 3D. J. Funct. Anal., 2021, 280 (8): Paper No. 108934, 72 pp.

[51]

SohingerV. A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on T 3 \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{T}^{3}$$\end{document} from the dynamics of many-body quantum systems. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 2015, 32(6): 1337-1365

[52]

SohingerV. Local existence of solutions to randomized Gross–Pitaevskii hierarchies. Trans. Amer. Math. Soc., 2016, 368(3): 1759-1835

[53]

SohingerV, StaffilaniG. Randomization and the Gross–Pitaevskii hierarchy. Arch. Ration. Mech. Anal., 2015, 218(1): 417-485

[54]

XieZ. Derivation of a nonlinear Schrödinger equation with a general power-type nonlinearity in d = 1, 2. Differential Integral Equations, 2015, 28(5–6): 455-504

[55]

YauH-T. Relative entropy and hydrodynamics of Ginzburg–Landau models. Lett. Math. Phys., 1991, 22(1): 63-80

[56]

ZhangP. Wigner measure and the semiclassical limit of Schrödinger–Poisson equations. SIAM J. Math. Anal., 2002, 34(3): 700-718

[57]

ZhangP. Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations. Courant Lect. Notes Math., 2008 Providence, RI American Mathematical Society 17

[58]

ZhangP, ZhengY, MauserNJ. The limit from the Schrödinger–Poisson to the Vlasov–Poisson equations with general data in one dimension. Comm. Pure Appl. Math., 2002, 55(5): 582-632

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/