Continuity of Bilinear Fractional Maximal Commutators with Lipschitz Symbols in Sobolev Spaces
Xixi Jiang , Feng Liu , Yongming Wen
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (6) : 1239 -1284.
Continuity of Bilinear Fractional Maximal Commutators with Lipschitz Symbols in Sobolev Spaces
We establish the continuity of bilinear fractional maximal commutator with Lipschitz symbols in Sobolev spaces, both in the global and local cases. The main ingredients of proving the main results are some new pointwise estimates for the weak derivatives of the above commutators. The continuity result in global case answers a question originally motivated by Wang and Liu in [Math. Inequal. Appl., 2022, 25(2): 573–600].
Bilinear fractional maximal commutator / Lipschitz symbol / Sobolev space / continuity / 42B25 / 46E35
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
Liu F., Liu S., Zhang X., Regularity properties of bilinear maximal function and its fractional variant. Results Math., 2020, 75 (3): Paper No. 88, 29 pp. |
| [18] |
|
| [19] |
Liu F., Wang S., Xue Q., Regularity of local bilinear maximal operator. Results Math., 2021, 76 (4): Paper No. 211, 44 pp. |
| [20] |
Liu F., Xi S., Sobolev regularity for commutators of the fractional maximal functions. Banach J. Math. Anal., 2021, 15 (1): Paper No. 5, 36 pp. |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Wang G., Liu F., Commutators of local bilinear maximal operator with Sobolev symbols. Internat. J. Math., 2022, 33 (9): Paper No. 2250061, 20 pp. |
| [29] |
|
| [30] |
|
Peking University
/
| 〈 |
|
〉 |