Continuity of Bilinear Fractional Maximal Commutators with Lipschitz Symbols in Sobolev Spaces

Xixi Jiang , Feng Liu , Yongming Wen

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (6) : 1239 -1284.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (6) :1239 -1284. DOI: 10.1007/s11464-024-0041-5
Research Article
research-article

Continuity of Bilinear Fractional Maximal Commutators with Lipschitz Symbols in Sobolev Spaces

Author information +
History +
PDF

Abstract

We establish the continuity of bilinear fractional maximal commutator with Lipschitz symbols in Sobolev spaces, both in the global and local cases. The main ingredients of proving the main results are some new pointwise estimates for the weak derivatives of the above commutators. The continuity result in global case answers a question originally motivated by Wang and Liu in [Math. Inequal. Appl., 2022, 25(2): 573–600].

Keywords

Bilinear fractional maximal commutator / Lipschitz symbol / Sobolev space / continuity / 42B25 / 46E35

Cite this article

Download citation ▾
Xixi Jiang, Feng Liu, Yongming Wen. Continuity of Bilinear Fractional Maximal Commutators with Lipschitz Symbols in Sobolev Spaces. Frontiers of Mathematics, 2025, 20(6): 1239-1284 DOI:10.1007/s11464-024-0041-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bu R, Fu Z, Zhang Y. Weighted estimates for bilinear square functions with non-smooth kernels and commutators. Front. Math. China, 2020, 15(1): 1-20

[2]

Chen P, Duong XT, Li J, Wu Q. Compactness of Riesz transform commutator on stratified Lie groups. J. Funct. Anal., 2019, 277(6): 1639-1676

[3]

Fu Z, Gong S, Lu LSZ, Yuan W. Weighted multilinear Hardy operators and commutators. Forum Math., 2015, 27(5): 2825-2851

[4]

Fu Z, Gong R, Pozzi E, Wu Q. Cauchy–Szegö commutators on weighted Morrey spaces. Math. Nachr., 2023, 296(5): 1859-1885

[5]

Fu Z, Grafakos L, Lin Y, Wu Y, Yang S. Riesz transform associated with the fractional Fourier transform and applications in image edge detection. Appl. Comput. Harmon. Anal., 2023, 66: 211-235

[6]

Fu Z, S, Shi S. Two characterizations of central BMO space via the commutators of Hardy operators. Forum Math., 2021, 33(2): 505-529

[7]

Fu Z, Pozzi E, Wu Q. Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions. Front. Math. China, 2022, 17(4): 625-652

[8]

García-Cuerva J, Harboure E, Segovia C, Torrea JL. Weighted norm inequalities for commutators of strongly singular integrals. Indiana Univ. Math. J., 1991, 40(4): 1397-1420

[9]

Gilbarg D, Trudinger NS. Elliptic Partial Differential Equations of Second Order, 1983Second EditionBerlin, Springer-Verlag

[10]

Gong R, Vempati MN, Wu Q, Xie P. Boundedness and compactness of Cauchy type integral commutator on weighted Morrey spaces. J. Aust. Math. Soc., 2022, 113(1): 36-56

[11]

Hajłasz P, Onninen J. On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn. Math., 2004, 29(1): 167-176

[12]

Heikkinen T, Kinnunen J, Korvenpää J, Tuominen H. Regularity of the local fractional maximal function. Ark. Mat., 2015, 53(1): 127-154

[13]

Jiang X, Liu F. Continuity of the maximal commutators in Sobolev spaces. J. Korean Math. Soc., 2024, 61(3): 461-494

[14]

Kinnunen J. The Hardy–Littlewood maximal function of a Sobolev function. Israel J. Math., 1997, 100: 117-124

[15]

Kinnunen J, Lindqvist P. The derivative of the maximal function. J. Reine Angew. Math., 1998, 503: 161-167

[16]

Kinnunen J, Saksman E. Regularity of the fractional maximal function. Bull. London Math. Soc., 2003, 35(4): 529-535

[17]

Liu F., Liu S., Zhang X., Regularity properties of bilinear maximal function and its fractional variant. Results Math., 2020, 75 (3): Paper No. 88, 29 pp.

[18]

Liu F, Wang G. Regularity of commutators of maximal operators with Lipschitz symbols. Taiwanese J. Math., 2021, 25(5): 1007-1039

[19]

Liu F., Wang S., Xue Q., Regularity of local bilinear maximal operator. Results Math., 2021, 76 (4): Paper No. 211, 44 pp.

[20]

Liu F., Xi S., Sobolev regularity for commutators of the fractional maximal functions. Banach J. Math. Anal., 2021, 15 (1): Paper No. 5, 36 pp.

[21]

Liu F, Xue Q, Zhang P. Regularity and continuity of commutators of the Hardy-Littlewood maximal function. Math. Nachr., 2020, 293(3): 491-509

[22]

Luiro H. Continuity of the maximal operator in Sobolev spaces. Proc. Amer. Math. Soc., 2007, 135(1): 243-251

[23]

Luiro H. On the regularity of the Hardy–Littlewood maximal operator on subdomains of ℝn. Proc. Edinb. Math. Soc. (2), 2010, 53(1): 211-237

[24]

Ruan J, Fan D, Wu Q. Weighted Morrey estimates for Hausdorff operator and its commutator on the Heisenberg group. Math. Inequal. Appl., 2019, 22(1): 307-329

[25]

Segovia C, Torrea J. Higher order commutators for vector-valued Calderón-Zygmund operators. Trans. Amer. Math. Soc., 1993, 336(2): 537-556

[26]

Shi S, Fu Z, S. On the compactness of commutators of Hardy operators. Pacific J. Math., 2020, 307(1): 239-256

[27]

Wang G, Liu F. Regularity of commutator of bilinear maximal operator with Lipschitz symbols. Math. Inequal. Appl., 2022, 25(2): 573-600

[28]

Wang G., Liu F., Commutators of local bilinear maximal operator with Sobolev symbols. Internat. J. Math., 2022, 33 (9): Paper No. 2250061, 20 pp.

[29]

Wu Q, Fu Z. Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces. Bull. Malays. Math. Sci. Soc., 2017, 40(2): 635-654

[30]

Zhang P. Characterization of Lipschitz spaces via commutators of the Hardy–Littlewood maximal function. C. R. Math. Acad. Sci. Paris, 2017, 355(3): 336-344

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/