Higher Auslander-Reiten Sequences Revisited

Jian He , Hangyu Yin , Panyue Zhou

Frontiers of Mathematics ›› : 1 -20.

PDF
Frontiers of Mathematics ›› :1 -20. DOI: 10.1007/s11464-024-0038-0
Research Article
research-article

Higher Auslander-Reiten Sequences Revisited

Author information +
History +
PDF

Abstract

Let (

C,E,s
) be an n-exangulated category with enough projectives and enough injectives, and
X
be a cluster-tilting subcategory of
C
. Liu and Zhou have shown that the quotient category
C/X
is an n-abelian category. In this paper, we prove that if
C
has Auslander–Reiten n-exangles, then
C/X
has Auslander–Reiten n-exact sequences. Moreover, we also show that if a Frobenius n-exangulated category
C
has Auslander–Reiten n-exangles, then the stable category
C¯
of
C
has Auslander–Reiten (n + 2)-angles.

Keywords

n-exangulated category / n-abelian category / (n + 2)-angulated category / Auslander–Reiten sequence / 18G80 / 18E10

Cite this article

Download citation ▾
Jian He, Hangyu Yin, Panyue Zhou. Higher Auslander-Reiten Sequences Revisited. Frontiers of Mathematics 1-20 DOI:10.1007/s11464-024-0038-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auslander M, Reiten I. Representation theory of Artin algebras, III. Almost split sequences. Comm. Algebra, 1975, 3: 239-294

[2]

Auslander M, Reiten I. Representation theory of Artin algebras, IV. Invariants given by almost split sequences. Comm. Algebra, 1977, 5(5): 443-518

[3]

Auslander M, Smalø S. Almost split sequences in subcategories. J. Algebra, 1981, 69(2): 426-454

[4]

Fedele F. d-Auslander–Reiten sequence in subcategories. Proc. Edinb. Math. Soc. (2), 2020, 63(2): 342-373

[5]

Fedele F. Auslander–Reiten (d + 2)-angles in subcategories and a (d + 2)-angulated generalisation of a theorem by Brüning. J. Pure Appl. Algebra, 2019, 223(8): 3554-3580

[6]

Geiss C, Keller B, Oppermann S. n-angulated categories. J. Reine Angew. Math., 2013, 675: 101-120

[7]

Happel D. Triangulated Categories in the Representation Theory of Finite-dimensional Algebras, 1988, Cambridge, Cambridge University Press119

[8]

Haugland J. The Grothendieck group of an n-exangulated category. Appl. Categ. Structures, 2021, 29(3): 431-446

[9]

He J, Hu J, Zhang D, Zhou P. On the existence of Auslander–Reiten n-exangles in n-exangulated categories. Ark. Mat., 2022, 60(2): 365-385

[10]

Herschend M, Liu Y, Nakaoka H. n-exangulated categories (I): Definitions and fundamental properties. J. Algebra, 2021, 570: 531-586

[11]

Herschend M, Liu Y, Nakaoka H. n-exangulated categories (II): Constructions from n-cluster tilting subcategories. J. Algebra, 2022, 594: 636-684

[12]

Hu J, Zhang D, Zhou P. Two new classes of n-exangulated categories. J. Algebra, 2021, 568: 1-21

[13]

Iyama O, Yoshino Y. Mutations in triangulated categories and rigid Cohen–Macaulay modules. Invent. Math., 2008, 172(1): 117-168

[14]

Jasso G. n-abelian and n-exact categories. Math. Z., 2016, 283(3–4): 703-759

[15]

Jørgensen P. Auslander–Reiten triangles in subcategories. J. K-Theory, 2009, 3(3): 583-601

[16]

Jiao P., The generalized Auslander–Reiten duality on an exact category. J. Algebra Appl., 2018, 17(12): Paper No. 1850227, 14 pp.

[17]

Li J, He J. Higher-dimensional Auslander–Reiten sequences. Czechoslovak Math. J., 2024, 74(3): 771-786

[18]

Liu S. Auslander–Reiten theory in a Krull–Schmidt category. São Paulo J. Math. Sci., 2010, 4(3): 425-472

[19]

Liu Y, Zhou P. Frobenius n-exangulated categories. J. Algebra, 2020, 559(10): 161-183

[20]

Liu Y, Zhou P. From n-exangulated categories to n-abelian categories. J. Algebra, 2021, 579: 210-230

[21]

Nakaoka H, Palu Y. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Geom. Differ. Categ., 2019, 60(2): 117-193

[22]

Oppermann S, Thomas H. Higher-dimensional cluster combinatorics and representation theory. J. Eur. Math. Soc. (JEMS), 2012, 14(6): 1679-1737

[23]

Reiten I, Van den Bergh M. Noetherian hereditary abelian categories satisfying Serre duality. J. Amer. Math. Soc., 2002, 15(2): 295-366

[24]

Shah A. Auslander–Reiten theory in quasi-abelian and Krull–Schmidt categories. J. Pure Appl. Algebra, 2020, 224(1): 98-124

[25]

Zheng Q, Wei J. (n + 2)-angulated quotient categories. Algebra Colloq., 2019, 26(4): 689-720

[26]

Zhou P. On the existence of Auslander–Reiten (d + 2)-angles in (d + 2)-angulated categories. Taiwanese J. Math., 2021, 25(2): 233-249

[27]

Zhou P, Zhu B. n-Abelian quotient categories. J. Algebra, 2019, 527: 264-279

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/