Liouville Theorem for Quasilinear Elliptic Equations in ℝN

Wangzhe Wu , Qiqi Zhang

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 979 -1005.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 979 -1005. DOI: 10.1007/s11464-024-0014-8
Research Article
research-article

Liouville Theorem for Quasilinear Elliptic Equations in ℝN

Author information +
History +
PDF

Abstract

We prove Liouville theorem for the equation Δmv + vp + M∣∇vq = 0 in a domain Ω ⊂ ℝn, with M ∈ ℝ in the critical and subcritical case. As a natural extension of our recent work [2023, arXiv:2311.04641], the proof is based on an integral identity and Young’s inequality.

Keywords

Liouville theorem / quasilinear elliptic equation / p-Laplacian / 35J62

Cite this article

Download citation ▾
Wangzhe Wu, Qiqi Zhang. Liouville Theorem for Quasilinear Elliptic Equations in ℝN. Frontiers of Mathematics, 2025, 20(5): 979-1005 DOI:10.1007/s11464-024-0014-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bidaut-VéronM-F. Local and global behavior of solutions of quasilinear equations of Emden-Fowler type. Arch. Rational Mech. Anal., 1989, 107(4): 293-324.

[2]

Bidaut-VéronM-F. Liouville results and asymptotics of solutions of a quasilinear elliptic equation with supercritical source gradient term. Adv. Nonlinear Stud., 2021, 21(1): 57-76.

[3]

Bidaut-VéronM-F, Garcia-HuidobroM, VéronL. Local and global properties of solutions of quasilinear Hamilton–Jacobi equations. J. Funct. Anal., 2014, 267(9): 3294-3331.

[4]

Bidaut-VéronM-F, Garcia-HuidobroM, VéronL. A priori estimates for elliptic equations with reaction terms involving the function and its gradient. Math. Ann., 2020, 378(1–2): 13-56.

[5]

Bidaut-VéronM-F, Garcia-HuidobroM, VéronL. Radial solutions of scaling invariant nonlinear elliptic equations with mixed reaction terms. Discrete Contin. Dyn. Syst., 2020, 40(2): 933-982.

[6]

Bidaut-VéronM-F, VéronL. Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations. Invent. Math., 1991, 106(3): 489-539.

[7]

ChenW, LiC. Classification of solutions of some nonlinear elliptic equations. Duke Math. J., 1991, 63(3): 615-622.

[8]

ChipotM, WeisslerF. Some blowup results for a nonlinear parabolic equation with a gradient term. SIAM J. Math. Anal., 1989, 20(4): 886-907.

[9]

DamascelliL, MerchánS, MontoroL, SciunziB. Radial symmetry and applications for a problem involving the −Δp(·) operator and critical nonlinearity in ℝn. Adv. Math., 2014, 265: 313-335.

[10]

Filippucci R., Sun Y., Zheng Y., A priori estimates and Liouville type results for quasi-linear elliptic equations involving gradient terms. J. Anal. Math., 2024, https://doi.org/10.1007/s11854-024-0341-4

[11]

GidasB, SpruckJ. Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math., 1981, 34(4): 525-598.

[12]

GueddaM, VéronL. Local and global properties of solutions of quasilinear elliptic equations. J. Differential Equations, 1988, 76(1): 159-189.

[13]

He J., Hu J., Wang Y., Nash–Moser iteration approach to the logarithmic gradient estimates and Liouville properites of quasilinear elliptic equations on manifolds. 2024, arXiv:2311.02568v2

[14]

He J., Wang Y., On the universal local and global properties of positive solutions to Δpv + b∣∇vq + cvr = 0 on complete Riemannian manifolds. 2024, arXiv:2311.13179v2

[15]

LionsPL. Quelques remarques sur les problémes elliptiques quasilinéaires du second ordre. J. Anal. Math., 1985, 45: 234-254.

[16]

Ma X., Wu W., Zhang Q., Liouville theorem for elliptic equations involving the sum of the function and its gradient in ℝn. 2023, arXiv:2311.04641

[17]

Ni W.-M., Serrin J., Nonexistence theorems for quasilinear partial differential equations. Rend. Circ. Mat. Palermo (2) Suppl., 1985, (8): 171–185

[18]

NiW-M, SerrinJ. Nonexistence theorems for singular solutions of quasilinear partial differential equations. Comm. Pure Appl. Math., 1986, 39(3): 379-399.

[19]

SerrinJ. Local behavior of solutions of quasi-linear equations. Acta Math., 1964, 111: 247-302.

[20]

SerrinJ, ZouH. Existence and non-existence results for ground states of quasilinear elliptic equations. Arch. Ration. Mech. Anal., 1992, 121: 101-130.

[21]

SerrinJ, ZouH. Ground states of degenerate quasilinear equations. Differential Equations with Applications to Mathematical Physics, 1993, Boston, MA. Academic Press. 287305. 192

[22]

SerrinJ, ZouH. Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math., 2002, 189(1): 79-142.

[23]

VètoisJ. A priori estimates and application to the symmetry of solutions for critical p-Laplace equations. J. Differential Equations, 2016, 260(1): 149-161.

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/