Finiteness of Bowen-Margulis-Sullivan Measures on Certain Manifolds Without Conjugate Points

Fei Liu , Xiaokai Liu , Fang Wang

Frontiers of Mathematics ›› : 1 -11.

PDF
Frontiers of Mathematics ›› : 1 -11. DOI: 10.1007/s11464-024-0011-y
Research Article

Finiteness of Bowen-Margulis-Sullivan Measures on Certain Manifolds Without Conjugate Points

Author information +
History +
PDF

Abstract

This article studies the Bowen-Margulis-Sullivan (BMS) measures on non-compact manifolds without conjugate points. The finiteness of this measure on the unit tangent space indicates some important dynamical properties. Under the assumptions of uniform visibility axiom and Axiom 2, we give a criterion when the BMS measure is finite.

Keywords

Manifolds without conjugate points / geodesic flows / Bowen-Margulis-Sullivan measure

Cite this article

Download citation ▾
Fei Liu, Xiaokai Liu, Fang Wang. Finiteness of Bowen-Margulis-Sullivan Measures on Certain Manifolds Without Conjugate Points. Frontiers of Mathematics 1-11 DOI:10.1007/s11464-024-0011-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anosov DV. Geodesic Flows on Closed Riemann Manifolds with Negative Curvature, 1969, Providence, RI: American Mathematical Society

[2]

Coornaert M. Sur les groupes proprement discontinus d’isométries des espaces hyperboliques au sens de Gromov, 1990, Strasbourg: Université Louis Pasteur

[3]

Eberlein P, O’Neill B. Visibility manifolds. Pacific J. Math., 1973, 46: 45-109

[4]

Knieper G. The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds. Ann. of Math. (2), 1998, 148(1): 291-314

[5]

Link G, Picaud J-C. Ergodic geometry for non-elementary rank one manifolds. Discrete Contin. Dyn. Syst., 2016, 36(11): 6257-6284

[6]

Liu F, Liu X, Wang F. The Hopf–Tsuji–Sullivan dichotomy on visibility manifolds without conjugate points, 2023 arXiv:2305.00301

[7]

Liu F, Wang F, Wu W. On the Patterson–Sullivan measure for geodesic flows on rank 1 manifolds without focal points. Discrete Contin. Dyn. Syst., 2020, 40(3): 1517-1554

[8]

Patterson S. The limit set of a Fuchsian group. Acta Math., 1976, 136(3–4): 241-273

[9]

Paulin F, Pollicott M, Schapira B. Equilibrium states in negative curvature. Astérisque, 2015, 373: viii +281 pp

[10]

Sullivan D. The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Études Sci. Publ. Math., 1979, 50: 171-202

[11]

Yue C. The ergodic theory of discrete isometry groups on manifolds of variable negative curvature. Trans. Amer. Math. Soc., 1996, 348(12): 4965-5005

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/