Global Solutions of a General Hyperbolic Navier-Stokes Equations

Ruihong Ji , Jingna Li , Ling Tian , Jiahong Wu

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 1007 -1042.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 1007 -1042. DOI: 10.1007/s11464-024-0007-7
Research Article
research-article

Global Solutions of a General Hyperbolic Navier-Stokes Equations

Author information +
History +
PDF

Abstract

Whether or not classical solutions to the hyperbolic Navier-Stokes equations (NSE) can develop finite-time singularities remains a challenging open problem. For general data without smallness condition, even the L2-norm of solutions is not known to be globally bounded in time. This paper presents a systematic approach to the global existence and stability problem by examining the difference between a general hyperbolic NSE and its corresponding Navier-Stokes counterpart. We make use of the integral representations. The functional setting is taken to be critical Sobolev spaces for the NSE. As a special consequence, any d-dimensional (d ≥ 2) hyperbolic NSE with general fractional dissipation is shown to possess a unique global solution if the coefficient of the double-time derivative and the initial data obey a suitable constraint.

Keywords

Critical Sobolev space / global well-posedness / hyperbolic Navier-Stokes equations / 35A05 / 35Q35 / 76D03

Cite this article

Download citation ▾
Ruihong Ji, Jingna Li, Ling Tian, Jiahong Wu. Global Solutions of a General Hyperbolic Navier-Stokes Equations. Frontiers of Mathematics, 2025, 20(5): 1007-1042 DOI:10.1007/s11464-024-0007-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbeS, ThurnerS. Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion. Phys. A, 2005, 356(2–4): 403-407.

[2]

BahouriH, CheminJ-Y, DanchinRFourier Analysis, Nonlinear Partial Differential Equations, 2011, Heidelberg. Springer. .

[3]

BrenierY, NataliniR, PuelM. On a relaxation approximation of the incompressible Navier-Stokes equations. Proc. Amer. Math. Soc., 2004, 132(4): 1021-1028.

[4]

BuckmasterT, VicolV. Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann. of Math. (2), 2019, 189(1): 101-144.

[5]

CarrassiM, MorroA. A modified Navier-Stokes equation, and its consequences on sound dispersion. Il Nuovo Cimento B, 1972, 9: 321-342.

[6]

CattaneoC. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena, 1949, 3: 83-101

[7]

CattaneoC. Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantane. C. R. Acad. Sci. Paris, 1958, 247: 431-433

[8]

ColomboM, De LellisC, De RosaL. Ill-posedness of leray solutions for the hypodissipative Navier-Stokes equations. Comm. Math. Phys., 2018, 362(2): 659-688.

[9]

CoulaudO, HachichaI, RaugelG. Hyperbolic quasilinear Navier-Stokes equations in ℝ2. J. Dynam. Differential Equations, 2022, 34(4): 2749-2785.

[10]

De RosaL. Infinitely many Leray-Hopf solutions for the fractional Navier-Stokes equations. Comm. Partial Differential Equations, 2019, 44(4): 335-365.

[11]

HachichaI. Global existence for a damped wave equation, convergence towards a solution of the Navier-Stokes problem. Nonlinear Anal., 2014, 96: 68-86.

[12]

JaraM. Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps. Comm. Pure Appl. Math., 2009, 62(2): 198-214.

[13]

JiuQ, WangY. On possible time singular points, eventual regularity of weak solutions to the fractional Navier-Stokes equations. Dyn. Partial Differ. Equ., 2014, 11(4): 321-343.

[14]

KatzNH, PavlovićNA. A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation. Geom. Funct. Anal., 2002, 12(2): 355-379.

[15]

LionsJ-L. Quelques résultats d existence dans des équations aux dérivées partielles non linéaires. Bull. Soc. Math. France, 1959, 87: 245-273.

[16]

LionsJ-LQuelques Méthodes de Resolution des Problémes aux Limites Non linéaires, 1969, Paris. Dunod.

[17]

Luo T., Titi E.S., Non-uniqueness of weak solutions to hyperviscous Navier-Stokes equations: on sharpness of J.-L. Lions exponent. Calc. Var. Partial Differential Equations, 2020, 59 (3): Paper No. 92, 15 pp.

[18]

OlsonE, TitiES. Viscosity versus vorticity stretching: Global well-posedness for a family of Navier-Stokes-alpha-like models. Nonlinear Anal., 2007, 66(11): 2427-2458.

[19]

RackeR, SaalJ. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evol. Equ. Control Theory, 2012, 1(1): 195-215.

[20]

RackeR, SaalJ. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evol. Equ. Control Theory, 2012, 1(1): 217-234.

[21]

TaoT. Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation. Anal. PDE, 2009, 3: 361-366.

[22]

VernotteP. Les paradoxes de la theorie continue de lequation de la chaleur. C. R. Acad. Sci. Paris, 1958, 246: 3154-3155

[23]

WuJ. Generalized MHD equations. J. Differential Equations, 2003, 195(2): 284-312.

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

40

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/