Infinitesimal (BiHom-)bialgebras of Any Weight (I): Basic Definitions and Properties

Tianshui Ma , Abdenacer Makhlouf

Frontiers of Mathematics ›› : 1 -36.

PDF
Frontiers of Mathematics ›› : 1 -36. DOI: 10.1007/s11464-024-0004-x
Research Article
research-article

Infinitesimal (BiHom-)bialgebras of Any Weight (I): Basic Definitions and Properties

Author information +
History +
PDF

Abstract

The purpose of this paper is to introduce and study λ-infinitesimal BiHom-bialgebras (abbr. λ-infBH-bialgebra) and some related structures. They can be seen as an extension of λ-infinitesimal bialgebras considered by Ebrahimi-Fard, including Joni–Rota’s infinitesimal bialgebras as well as Loday–Ronco’s infinitesimal bialgebras, and including also infinitesimal BiHom-bialgebras introduced by Liu, Makhlouf, Menini, Panaite. In this paper, we provide various relevant constructions and new concepts. Two ways are provided for a unitary (resp. counitary) algebra (resp. coalgebra) to be a λ-infBH-bialgebra and the notion of λ-infBH-Hopf module is introduced and discussed. It is proved, in connection with nonhomogeneous (co)associative BiHom-Yang-Baxter equation, that every (left BiHom-)module (resp., comodule) over an (anti-)quasitriangular (resp., (anti-)coquasitriangular) λ-infBH-bialgebra carries a structure of λ-infBH-Hopf module. Moreover, two approaches to construct BiHom-pre-Lie (co)algebras from λ-infBH-bialgebras are presented.

Keywords

Infinitesimal bialgebra / infinitesimal Hopf module / quasitriangular infinitesimal bialgebra / 17B61 / 17D30 / 17B38 / 17A30 / 16T10

Cite this article

Download citation ▾
Tianshui Ma,Abdenacer Makhlouf. Infinitesimal (BiHom-)bialgebras of Any Weight (I): Basic Definitions and Properties. Frontiers of Mathematics 1-36 DOI:10.1007/s11464-024-0004-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AguiarM. Infinitesimal Hopf algebras. New Trends in Hopf Algebra Theory (La Falda, 1999), Contemp. Math., 2000, 267: 1-29

[2]

AguiarM. On the associative analog of Lie bialgebras. J. Algebra, 2001, 244(2): 492-532

[3]

AguiarM. Infinitesimal bialgebras, pre-Lie and dendriform algebras. Hopf Algebras, 2004, 237: 1-33

[4]

BrzezińskiT. Rota–Baxter systems, dendriform algebras and covariant bialgebras. J. Algebra, 2016, 460: 1-25

[5]

Ebrahimi-FardKRota–Baxter algebras and the Hopf algebra of renormalization, 2006, Bonn. University of Bonn.

[6]

FoissyL. The infinitesimal Hopf algebra and the operads of planar forests. Int. Math. Res. Not. IMRN, 2010, 2010(3): 395-435

[7]

FoissyL. The infinitesimal Hopf algebra and the poset of planar forests. J. Algebraic Combin., 2009, 30(3): 277-309

[8]

GaoX, WangXM. Infinitesimal unitary Hopf algebras and planar rooted forests. J. Algebraic Combin., 2019, 49(4): 437-460

[9]

Graziani G., Makhlouf A., Menini C., Panaite F., BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras. SIGMA Symmetry Integrability Geom. Methods Appl., 2015, 11: Paper No. 086, 34 pp.

[10]

HartwigJT, LarssonD, SilvestrovSD. Deformations of Lie algebras using σ-derivations. J. Algebra, 2006, 295(2): 314-361

[11]

JoniSA, RotaG-C. Coalgebras and Bialgebras in Combinatorics. Stud. Appl. Math., 1979, 61(2): 93-139

[12]

LiuL, MakhloufA, MeniniC, PanaiteF. BiHom-pre-Lie algebras, BiHom-Leibniz algebras and Rota–Baxter operators on BiHom-Lie algebras. Georgian Math. J., 2021, 28(4): 581-594

[13]

LiuL, MakhloufA, MeniniC, PanaiteF. Rota–Baxter operators on BiHom-associative algebras and related structures. Colloq. Math., 2020, 161(2): 263-294

[14]

LiuL, MakhloufA, MeniniC, PanaiteF. BiHom-Novikov algebras and infinitesimal BiHom-bialgebras. J. Algebra, 2020, 560: 1146-1172

[15]

LodayJ-L, RoncoM. On the structure of cofree Hopf algebras. J. Reine Angew. Math., 2006, 592: 123-155

[16]

MaT, LiJ. Nonhomogeneous associative Yang-Baxter equations. Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 2022, 65(1): 97-118

[17]

MaT, LiJ, YangT. Coquasitriangular infinitesimal BiHom-bialgebras and related structures. Comm. Algebra, 2021, 49(6): 2423-2443

[18]

Ma T., Makhlouf A., Infinitesimal (BiHom-)bialgebras of any weight (II): Representations. 2023, arXiv:2310.09975

[19]

Ma T., Makhlouf A., Silvestrov S., Rota–Baxter cosystems and coquasitriangular mixed bialgebras. J. Algebra Appl., 2021, 20(4): Paper No. 2150064, 28 pp.

[20]

Ma T., Yang H., Drinfeld double for infinitesimal BiHom-bialgebras. Adv. Appl. Clifford Algebr., 2020, 30(3): Paper No. 42, 22 pp.

[21]

MaT, YangH, ZhangL, ZhengH. Quasitriangular covariant monoidal BiHom-bialgebras, associative monoidal BiHom-Yang–Baxter equations and Rota–Baxter paired monoidal BiHom-modules. Colloq. Math., 2020, 161(2): 189-221

[22]

MakhloufA, SilvestrovS. Hom-algebra structures. J. Gen. Lie Theory Appl., 2008, 2(2): 51-64

[23]

OgievetskyO, PopovT. R-matrices in rime. Adv. Theor. Math. Phys., 2010, 14(2): 439-505

[24]

WangS, WangS. Drinfeld double for braided infinitesimal Hopf algebras. Comm. Algebra, 2014, 42(5): 2195-2212

[25]

Yau D., Infinitesimal Hom-bialgebras and Hom-Lie bialgebras. 2010, arXiv:1001.5000

[26]

ZhangY, ChenD, GaoX, LuoY. Weighted infinitesimal unitary bialgebras on rooted forests and weighted cocycles. Pacific J. Math., 2019, 302(2): 741-766

[27]

ZhangY, GaoX. Weighted infinitesimal bialgebras. Chinese Ann. Math. Ser. A, 2022, 43(2): 153-190

[28]

ZhangY, GaoX, LuoY. Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras. J. Algebraic Combin., 2021, 53(3): 771-803

[29]

ZhangY, ZhuZ, ZhengJ, GaoX. Weighted infinitesimal unitary bialgebras and weighted associative Yang-Baxter equations. Adv. Math. (China), 2022, 51(6): 1011-1028

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/