Infinitesimal (BiHom-)bialgebras of Any Weight (I): Basic Definitions and Properties
Tianshui Ma , Abdenacer Makhlouf
Frontiers of Mathematics ›› : 1 -36.
Infinitesimal (BiHom-)bialgebras of Any Weight (I): Basic Definitions and Properties
The purpose of this paper is to introduce and study λ-infinitesimal BiHom-bialgebras (abbr. λ-infBH-bialgebra) and some related structures. They can be seen as an extension of λ-infinitesimal bialgebras considered by Ebrahimi-Fard, including Joni–Rota’s infinitesimal bialgebras as well as Loday–Ronco’s infinitesimal bialgebras, and including also infinitesimal BiHom-bialgebras introduced by Liu, Makhlouf, Menini, Panaite. In this paper, we provide various relevant constructions and new concepts. Two ways are provided for a unitary (resp. counitary) algebra (resp. coalgebra) to be a λ-infBH-bialgebra and the notion of λ-infBH-Hopf module is introduced and discussed. It is proved, in connection with nonhomogeneous (co)associative BiHom-Yang-Baxter equation, that every (left BiHom-)module (resp., comodule) over an (anti-)quasitriangular (resp., (anti-)coquasitriangular) λ-infBH-bialgebra carries a structure of λ-infBH-Hopf module. Moreover, two approaches to construct BiHom-pre-Lie (co)algebras from λ-infBH-bialgebras are presented.
Infinitesimal bialgebra / infinitesimal Hopf module / quasitriangular infinitesimal bialgebra / 17B61 / 17D30 / 17B38 / 17A30 / 16T10
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Graziani G., Makhlouf A., Menini C., Panaite F., BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras. SIGMA Symmetry Integrability Geom. Methods Appl., 2015, 11: Paper No. 086, 34 pp. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
Ma T., Makhlouf A., Infinitesimal (BiHom-)bialgebras of any weight (II): Representations. 2023, arXiv:2310.09975 |
| [19] |
Ma T., Makhlouf A., Silvestrov S., Rota–Baxter cosystems and coquasitriangular mixed bialgebras. J. Algebra Appl., 2021, 20(4): Paper No. 2150064, 28 pp. |
| [20] |
Ma T., Yang H., Drinfeld double for infinitesimal BiHom-bialgebras. Adv. Appl. Clifford Algebr., 2020, 30(3): Paper No. 42, 22 pp. |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
Yau D., Infinitesimal Hom-bialgebras and Hom-Lie bialgebras. 2010, arXiv:1001.5000 |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
Peking University
/
| 〈 |
|
〉 |