Gorenstein Silting and FP-cosilting Modules

Qianqian Yuan , Hailou Yao

Frontiers of Mathematics ›› : 1 -33.

PDF
Frontiers of Mathematics ›› :1 -33. DOI: 10.1007/s11464-023-0177-8
Research Article
research-article

Gorenstein Silting and FP-cosilting Modules

Author information +
History +
PDF

Abstract

In this paper, our goal is to introduce n-Gorenstein silting and n-(Gorenstein) FP-cosilting modules, and uncover the precise circumstances that are both required and sufficient for these modules to demonstrate the distinct features. We prove that the character module of an n-Gorenstein silting module with respect to finite-type

T
is n-Gorenstein cosilting. Furthermore, we give the connections between n-Gorenstein silting, n-Gorenstein tilting, n-Gorenstein star and n-Gorenstein quasi-tilting modules, and show that if a left R module T satisfies that CopresG(PresGn(T)) = R-Mod, then the four above are equivalent, which more closely tie the silting, tilting and star theories in the context of Gorenstein homological algebras. We point out that the deleted n-Gorenstein projective (injective) resolutions of partial n-Gorenstein (co)silting modules are (n + 1)-Gorenstein pre(co)silting complexes. Finally, we introduce n-(Gorenstein) FP-cosilting modules. We investigate n-FP-cosilting over some extensions and obtain the relations among n-(Gorenstein) FP-cosilting, n-(Gorenstein) cosilting and Gorenstein weak n-silting modules.

Keywords

Gorenstein silting module / Gorenstein tilting module / Gorenstein star module / Gorenstein quasi-tilting module / Gorenstein FP-cosilting module / 18G25 / 16D40 / 16E05 / 16E30

Cite this article

Download citation ▾
Qianqian Yuan, Hailou Yao. Gorenstein Silting and FP-cosilting Modules. Frontiers of Mathematics 1-33 DOI:10.1007/s11464-023-0177-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angeleri Hügel L, Coelho FU. Infinitely generated tilting modules of finite projective dimension. Forum Math., 2001, 13(2): 239-250

[2]

Angeleri Hügel L, Marks F, Vitoria J. Silting modules. Int. Math. Res. Not. IMRN, 2016, 2016(4): 1251-1284

[3]

Angeleri Hügel L, Tonolo A, Trlifaj J. Tilting preenvelope and cotilting precover. Algebr. Represent. Theory, 2001, 4(2): 155-170

[4]

Assem I, Simson D, Skowroński A. Elements of the Representation Theory of Associative Algebras, Vol. 1, 2006, Cambridge, Cambridge University Press

[5]

Auslander M, Platzeck MI, Reiten I. Coxeter functors without diagrams. Trans. Amer. Math. Soc., 1979, 250: 1-46

[6]

Auslander M, Solberg Ø. Relative homology and representation theory, I. Relative homology and homologically finite subcategories. Comm. Algebra, 1993, 21(9): 2995-3031

[7]

Auslander M, Solber Ø. Relative homology and representation theory, II. Relative cotilting theory. Comm. Algebra, 1993, 21(9): 3033-3079

[8]

Bazzoni S. A characterization of n-cotilting and n-tilting modules. J. Algebra, 2004, 273(1): 359-372

[9]

Breaz S, Pop F. Cosilting modules. Algebr. Represent. Theory, 2017, 20(5): 1305-1321

[10]

Brenner S, Butler MCR. Generalizations of the Bernstein–Gel’fand–Ponomarev reflection functors. Representation Theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), 1980, Berlin, Springer103169

[11]

Cao W, Wei J. Gorenstein silting complexes. Glasg. Math. J., 2022, 64(1): 122-135

[12]

Charles M. Absolutely pure modules. Proc. Amer. Math. Soc., 1970, 26: 561-566

[13]

Colpi R, Trlifaj J. Tilting modules and tilting torsion theories. J. Algebra, 1995, 178(2): 614-634

[14]

Crivei S, Prest M. Covers in finitely accessible categories. Proc. Amer. Math. Soc., 2010, 138(4): 1213-1221

[15]

Eilenberg S., Moore J.C., Foundations of relative homological algebra. Mem. Amer. Math. Soc., 1965, 55: 39 pp.

[16]

Enochs EE, Jenda OMG. Relative Homological Algebra, 2000, Berlin, Walter de Gruyter & Co. 30

[17]

Gao N, Zhang P. Gorenstein derived categories. J. Algebra, 2010, 323(7): 2041-2057

[18]

Gobel R, Trlifaj J. Approximations and Endomorphism Algebras of Modules, 2006, Berlin, Walter de Gruyter GmbH & Co. 41

[19]

Happel D, Ringel CM. Tilted algebras. Trans. Amer. Math. Soc., 1982, 274(2): 399-443

[20]

Keller B, Vossieck D. Aisles in derived categories. Bull. Soc. Math. Belg. Ser. A, 1988, 40(2): 239-253

[21]

Martínez L, Mendoza O. n-term silting complexes in Kb(proj(Λ)). J. Algebra, 2023, 622: 98-133

[22]

Maddox BH. Absolutely pure modules. Proc. Amer. Math. Soc., 1967, 18: 155-158

[23]

Mao L. Gorenstein orthogonal classes and Gorenstein weak tilting modules. Comm. Algebra, 2021, 49(10): 4172-4185

[24]

Mao L. Generalizations of n-tilting and n-cotilting modules. Bull. Malays. Math. Sci. Soc., 2022, 45(5): 2249-2267

[25]

Mao L, Ding N. Notes on FP-projective modules and FP-injective modules. Advances in Ring Theory, 2005, Hackensack, NJ, World Sci. Publ.151166

[26]

Mao L, Ding N. Gorenstein FP-injective and Gorenstein flat modules. J. Algebra Appl., 2008, 7(4): 491-506

[27]

Miyashita Y. Tilting modules of finite projective dimension. Math. Z., 1986, 193(1): 113-146

[28]

Moradifar P, Yassemi S. Infinitely generated Gorenstein tilting modules. Algebr. Represent. Theory, 2022, 25(6): 1389-1427

[29]

Passman D. The Algebraic Structure of Group Rings, 1977, New York, Wiley-Interscience

[30]

Rada J, Saorin M. Rings characterized by (pre)envelopes and (pre)covers of their modules. Comm. Algebra, 1998, 26(3): 899-912

[31]

Resco R. Radicals of finite normalizing extensions. Comm. Algebra, 1981, 9(7): 713-725

[32]

Shang W. Almost excellent extensions and the FP-homological property. Internat. J. Algebra, 2010, 4(16): 791-798

[33]

Stenström B. Coherent rings and FP-injective module. J. London Math. Soc. (2), 1970, 2: 323-329

[34]

Wei J. A note on relative tilting modules. J. Pure Appl. Algebra, 2010, 214(4): 493-500

[35]

Xue W. On almost excellent extensions. Algebra Colloq., 1996, 3(2): 125-134

[36]

Yan L, Li W, Ouyang B. Gorenstein cotilting and tilting modules. Comm. Algebra, 2016, 44(2): 591-603

[37]

Yao H, Yuan Q. The Bongartz’s theorem of Gorenstein cosilting complexes. J. Korean Math. Soc., 2023, 60(6): 1337-1364

[38]

Yuan Q., Yao H., Gorenstein weak n-silting modules and weak n-star modules. Bull. Iranian Math. Soc., 2023, 49(5): Paper No. 57, 27 pp.

[39]

Yuan Q, Yao H. Weak silting modules. Algebr. Represent. Theory, 2024, 27(4): 1681-1707

[40]

Zhang P. Gorenstein star modules and Gorenstein tilting modules. Czechoslovak Math. J., 2021, 71(2): 403-416

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/