PDF
Abstract
Let $1 < k < {7 \over 6},{\lambda _1},{\lambda _2},{\lambda _3}$ and λ4 be non-zero real numbers, not all of the same sign such that ${{{\lambda _1}} \over {{\lambda _2}}}$ is irrational and let ω be a real number. We prove that the inequality $\left| {{\lambda _1}p_1^2 + {\lambda _2}p_2^2 + {\lambda _3}p_3^2 + {\lambda _4}p_4^k - \omega} \right| \le {\left({{{\max}_j}{p_j}} \right)^{- {{7 - 6k} \over {14k}} + \varepsilon}}$ has infinitely many solutions in prime variables p1, p2, p3, p4 for any ε > 0.
Keywords
Diophantine inequalities
/
Goldbach-type problem
/
Hardy–Littlewood method
/
11D75
/
11J25
/
11P32
/
11P55
Cite this article
Download citation ▾
Alessandro Gambini.
Diophantine Approximation with a Quaternary Problem.
Frontiers of Mathematics, 2025, 20(5): 1043-1060 DOI:10.1007/s11464-023-0158-y
| [1] |
BakerR, HarmanG. Diophantine approximation by prime numbers. J. London Math. Soc. (2), 1982, 25(2): 201-215.
|
| [2] |
BrüdernJ, CookR, PerelliA. The values of binary linear forms at prime arguments. Sieve Methods, Exponential Sums, and Their Applications in Number Theory (Cardiff, 1995), 1997, Cambridge. Cambridge Univ. Press. 87100. 237
|
| [3] |
CookR. The value of additive forms at prime arguments. J. Théor. Nombres Bordeaux, 2001, 13(1): 77-91.
|
| [4] |
CookR, FoxA. The values of ternary quadratic forms at prime arguments. Mathematika, 2001, 48(1–2): 137-149.
|
| [5] |
CookR, HarmanG. The values of additive forms at prime arguments. Rocky Mountain J. Math., 2006, 36(4): 1153-1164.
|
| [6] |
DavenportH, HeilbronnH. On indefinite quadratic forms in five variables. J. London Math. Soc., 1946, 21: 185-193.
|
| [7] |
GambiniA. Diophantine approximation with one prime, two squares of primes and one k-th power of a prime. Open Math., 2021, 19(1): 373-387.
|
| [8] |
GambiniA, LanguascoA, ZaccagniniA. A Diophantine approximation problem with two primes and one k-power of a prime. J. Number Theory, 2018, 188: 210-228.
|
| [9] |
GaoG, LiuZ. Results of Diophantine approximation by unlike powers of primes. Front. Math. China, 2018, 13(4): 797-808.
|
| [10] |
Ge W., Li W., One Diophantine inequality with unlike powers of prime variables. J. Inequal. Appl., 2016, 2016: Paper No. 33, 8 pp.
|
| [11] |
HarmanG. Diophantine approximation by prime numbers. J. London Math. Soc. (2), 1991, 44(2): 218-226.
|
| [12] |
HarmanG. The values of ternary quadratic forms at prime arguments. Mathematika, 2004, 51(1–2): 83-96.
|
| [13] |
HarmanG, KumchevAV. On sums of squares of primes. Math. Proc. Cambridge Philos. Soc., 2006, 140(1): 1-13.
|
| [14] |
LanguascoA, ZaccagniniA. A Diophantine problem with a prime and three squares of primes. J. Number Theory, 2012, 132(12): 3016-3028.
|
| [15] |
LanguascoA, ZaccagniniA. On a ternary Diophantine problem with mixed powers of primes. Acta Arith., 2013, 159(4): 345-362.
|
| [16] |
LanguascoA, ZaccagniniA. A Diophantine problem with prime variables. Highly Composite: Papers in Number Theory, 2016, Mysore. Ramanujan Math. Soc.. 15716823
|
| [17] |
LiW, WangT. Diophantine approximation with one prime and three squares of primes. Ramanujan J., 2011, 25(3): 343-357.
|
| [18] |
LiuZ, SunH. Diophantine approximation with one prime and three squares of primes. Ramanujan J., 2013, 30(3): 327-340.
|
| [19] |
MatomäkiK. Diophantine approximation by primes. Glasg. Math. J., 2010, 52(1): 87-106.
|
| [20] |
MuQ. Diophantine approximation with four squares and one kth power of primes. Ramanujan J., 2016, 39(3): 481-496.
|
| [21] |
MuQ, ZhuM, LiP. A Diophantine inequality with four squares and one kth power of primes. Czechoslovak Math. J., 2019, 69(2): 353-363.
|
| [22] |
RiegerG. Über die Summe aus einem Quadrat und einem Primzahlquadrat. J. Reine Angew. Math., 1968, 231: 89-100
|
| [23] |
VaughanR. Diophantine approximation by prime numbers, I. Proc. London Math. Soc. (3), 1974, 28: 373-384.
|
| [24] |
VaughanR. Diophantine approximation by prime numbers, II. Proc. London Math. Soc. (3), 1974, 28: 385-401.
|
| [25] |
WangY, YaoW. Diophantine approximation with one prime and three squares of primes. J. Number Theory, 2017, 180: 234-250.
|
| [26] |
WatsonG. On indefinite quadratic forms in five variables. Proc. London Math. Soc. (3), 1953, 3: 170-181.
|
RIGHTS & PERMISSIONS
Peking University