p-adic Valuation of the Sum of Divisors

Junjia Zhao , Yonggao Chen

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 795 -827.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 795 -827. DOI: 10.1007/s11464-023-0154-2
Research Article

p-adic Valuation of the Sum of Divisors

Author information +
History +
PDF

Abstract

For any positive integer n, let σ(n) be the sum of all positive divisors of n. For any prime p and any positive integer m, let ν p(m) be the largest integer α such that p αm. Recently, Amdeberhan, Moll, Sharma and Villamizar proved that for any odd prime p and any integer n ≥ 2, ν p(σ(n) ≤ [log p n] if n satisfies some conditions, where [x] denotes the least integer not less than x. In this paper, for any odd prime p, we prove that ν p(σ(n) ≤ [log p n] for all positive integers n unconditionally. Moreover, we prove that if 3 ≤ p < 105 is a prime and p ≠ 31, then there are only finitely many positive integers n such that ν p(σ(n) = [log p n]. For p = 31 and n ≥ 2, ν p(σ(n) = [log p n] if and only if n = 24, 52, 2452 and 2452(2 · 31 s − 1), where s is a positive integer and 2 · 31 s − 1 is a prime.

Keywords

Sum-of-divisors function / p-adic valuation / Nagell–Ljunggren equation / Goormaghtigh’s conjecture

Cite this article

Download citation ▾
Junjia Zhao, Yonggao Chen. p-adic Valuation of the Sum of Divisors. Frontiers of Mathematics, 2025, 20(4): 795-827 DOI:10.1007/s11464-023-0154-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/