p-adic Valuation of the Sum of Divisors

Junjia Zhao , Yonggao Chen

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 795 -827.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 795 -827. DOI: 10.1007/s11464-023-0154-2
Research Article

p-adic Valuation of the Sum of Divisors

Author information +
History +
PDF

Abstract

For any positive integer n, let σ(n) be the sum of all positive divisors of n. For any prime p and any positive integer m, let ν p(m) be the largest integer α such that p αm. Recently, Amdeberhan, Moll, Sharma and Villamizar proved that for any odd prime p and any integer n ≥ 2, ν p(σ(n) ≤ [log p n] if n satisfies some conditions, where [x] denotes the least integer not less than x. In this paper, for any odd prime p, we prove that ν p(σ(n) ≤ [log p n] for all positive integers n unconditionally. Moreover, we prove that if 3 ≤ p < 105 is a prime and p ≠ 31, then there are only finitely many positive integers n such that ν p(σ(n) = [log p n]. For p = 31 and n ≥ 2, ν p(σ(n) = [log p n] if and only if n = 24, 52, 2452 and 2452(2 · 31 s − 1), where s is a positive integer and 2 · 31 s − 1 is a prime.

Keywords

Sum-of-divisors function / p-adic valuation / Nagell–Ljunggren equation / Goormaghtigh’s conjecture

Cite this article

Download citation ▾
Junjia Zhao, Yonggao Chen. p-adic Valuation of the Sum of Divisors. Frontiers of Mathematics, 2025, 20(4): 795-827 DOI:10.1007/s11464-023-0154-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AmdeberhanT, MollVH, SharmaV, VillamizarD. Arithmetic properties of the sum of divisors. J. Number Theory, 2021, 223: 325-349

[2]

BatemanPT, HornRA. A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp., 1962, 16: 363-367

[3]

BugeaudY, MihăilescuP. On the Nagell–Ljunggren equation x n − 1 x − 1 = y q \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${{x^{n}-1} \over {x-1}}=y^{q}$$\end{document}. Math. Scand., 2007, 101(2): 177-183

[4]

HalberstamH, RichertH-E Sieve Methods, 1974 London-New York Academic Press

[5]

KomatsuT, YoungPT. Exact p-adic valuations of Stirling numbers of the first kind. J. Number Theory, 2017, 177: 20-27

[6]

LjunggrenW. Some theorems on indeterminate equations of the form (xn − 1)/(x − 1) = yq. Norsk Mat. Tidsskr., 1943, 25: 17-20

[7]

NagelT Note sur l’équation indéterminée x n − 1 x − 1 = y q \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${{x^{n}-1} \over {x-1}}=y^{q}$$\end{document}. Norsk Mat. Tidsskr., 1920, 2: 75-78

[8]

NielsenPP. Odd perfect numbers, Diophantine equations, and upper bounds. Math. Comp., 2015, 84(295): 2549-2567

[9]

OchemP, RaoM. Odd perfect numbers are greater than 101500. Math. Comp., 2012, 81(279): 1869-1877

[10]

RobinG. Large values of the sum-of-divisors function and the Riemann hypothesis. J. Math. Pures Appl. (9), 1984, 63(2): 187-213

[11]

RoseJ, GoormaghtighR Chercher les triangles automédians tels que la somme de leurs cotés soit un carré parfait (question 4663, de A. Gérardin). Interméd. des Math., 1917, 24: 20-22 88–90

[12]

RosserJB, SchoenfeldL. Approximate formulas for some functions of prime numbers. Illinois J. Math., 1962, 6: 64-94

[13]

SannaC. On the p-adic valuation of harmonic numbers. J. Number Theory, 2016, 166: 41-46

[14]

ShoreyTN, TijdemanR. New applications of Diophantine approximations to Diophantine equations. Math. Scand., 1976, 39(1): 5-18

[15]

StraubA, MollVH, AmdeberhanT. The p-adic valuation of k-central binomial coefficients. Acta Arith., 2009, 140(1): 31-42

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/