Jones Polynomial Versus Determinant of Quasi-alternating Links

Khaled Qazaqzeh

Frontiers of Mathematics ›› 2024, Vol. 20 ›› Issue (3) : 689 -698.

PDF
Frontiers of Mathematics ›› 2024, Vol. 20 ›› Issue (3) : 689 -698. DOI: 10.1007/s11464-023-0141-7
Research Article

Jones Polynomial Versus Determinant of Quasi-alternating Links

Author information +
History +
PDF

Abstract

We prove that there are only finitely many values of the Jones polynomial of quasi-alternating links of a given determinant. Consequently, we prove that there are only finitely many quasi-alternating links of a given Jones polynomial iff there are only finitely many quasi-alternating links of a given determinant.

Keywords

Quasi-alternating links / Jones polynomial / determinant

Cite this article

Download citation ▾
Khaled Qazaqzeh. Jones Polynomial Versus Determinant of Quasi-alternating Links. Frontiers of Mathematics, 2024, 20(3): 689-698 DOI:10.1007/s11464-023-0141-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BankwitzC. Über die Torsionszahlen der alternierenden Knoten. Math. Ann., 1930, 103(1): 145-161

[2]

ChampanerkarA, KofmanI. Twisting quasi-alternating links. Proc. Amer. Math. Soc., 2009, 137(7): 2451-2458

[3]

GreeneJ. Homologically thin, non-quasi-alternating links. Math. Res. Lett., 2010, 17(1): 39-49

[4]

JonesV. A Polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. (N.S.), 1985, 12(1): 103-111

[5]

KanenobuT. Infinitely many knots with the same polynomial invariant. Proc. Amer. Math. Soc., 1986, 97(1): 158-162

[6]

KauffmanL. State models and the Jones polynomial. Topology, 1987, 26(3): 395-407

[7]

LidmanT, SivekS. Quasi-alternating links with small determinant. Math. Proc. Cambridge Philos. Soc., 2017, 162(2): 319-336

[8]

LuseK, RongY. Examples of knots with the same polynomial. J. Knot Theory Ramifications, 2006, 15(6): 749-759

[9]

ManolescuC, OzsváthP. On the Khovanov and knot Floer homologies of quasi-alternating links. Proceedings of Gökova Geometry-Topology Conference 2007, 200860-81

[10]

OzsváthP, RasmussenJ, SzabóZ. Odd Khovanov homology. Algebr. Geom. Topol., 2013, 13(3): 1465-1488

[11]

OzsváthP, SzabóZ. On the Heegaard Floer homology of branched double-covers. Adv. Math., 2005, 194(1): 1-33

[12]

QazaqzehK, ChbiliN. A new obstruction of quasialternating links. Algebr. Geom. Topol., 2015, 15(3): 1847-1862

[13]

Qazaqzeh K., Chbili N., On Khovanov homology of quasi-alternating links. Mediterr. J. Math., 2022, 19(3): Paper No. 104, 21 pp.

[14]

Qazaqzeh K., Qublan B., Jaradat A., A remark on the determinant of quasi-alternating links. J. Knot Theory Ramifications, 2013, 22(6): Paper No. 1350031, 13 pp.

[15]

Teragaito M., Quasi-alternating links and Q-polynomials. J. Knot Theory Ramifications, 2014, 23(12): Paper No. 1450068, 6 pp.

[16]

Teragaito M., Quasi-alternating links and Kauffman polynomials. J. Knot Theory Ramifications, 2015, 24(7): Paper No. 1550038, 17 pp.

[17]

WatsonL. Knots with identical Khovanov homology. Algebr. Geom. Topol., 2007, 7: 1389-1407

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/