A Geometric Realization of the m-cluster Categories of Type

Dn

Lucie Jacquet-Malo

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (6) : 1325 -1370.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (6) :1325 -1370. DOI: 10.1007/s11464-023-0133-7
Research Article
research-article

A Geometric Realization of the m-cluster Categories of Type

Dn

Author information +
History +
PDF

Abstract

We show that a subcategory of the m-cluster category of type

Dn
is isomorphic to a category consisting of arcs in an (n − 2)m-gon with two central (m − 1)-gons in its interior. We show that the mutation of colored quivers and m-cluster-tilting objects is compatible with the flip of an (m + 2)-angulation. In the final part of this paper, we detail an example of a quiver of type
D7
.

Keywords

Cluster algebras / m-cluster categories / tame quivers /

')">
Dn
/ 18E30 / 13F60 / 05C62

Cite this article

Download citation ▾
Lucie Jacquet-Malo. A Geometric Realization of the m-cluster Categories of Type
Dn
. Frontiers of Mathematics, 2025, 20(6): 1325-1370 DOI:10.1007/s11464-023-0133-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Assem I, Simson D, Skowroński A. Elements of the Representation Theory of Associative Algebras, Vol. 1—Techniques of Representation Theory, 2006, Cambridge, Cambridge University Press

[2]

Auslander M, Smalø S. Almost split sequences in subcategories. J. Algebra, 1981, 69(2): 426-454

[3]

Baur K., Marsh R.-J., A geometric description of the m-cluster categories of type Dn. Int. Math. Res. Not. IMRN, 2007, 2007 (4): Art. ID rnm011, 19 pp.

[4]

Baur K, Marsh R-J. A geometric description of m-cluster categories. Trans. Amer. Math. Soc., 2008, 360(11): 5789-5803

[5]

Buan A. An introduction to higher cluster categories. Bull. Iranian Math. Soc., 2011, 37(2): 137-157

[6]

Buan A, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv. Math., 2006, 204(2): 572-618

[7]

Buan A, Thomas H. Coloured quiver mutation for higher cluster categories. Adv. Math., 2009, 222(3): 971-995

[8]

Baur K., Torkildsen E., A geometric realization of tame categories. 2015, arXiv:1502.06489

[9]

Brüstle T, Zhang J. On the cluster category of a marked surface without punctures. Algebra Number Theory, 2011, 5(4): 529-566

[10]

Caldero P, Chapoton F, Schiffler R. Quivers with relations arising from clusters (An case). Trans. Amer. Math. Soc., 2006, 358(3): 1347-1364

[11]

Ceballos C., Pilaud V., Cluster algebras of type D: pseudotriangulations approach. Electron. J. Combin., 2015, 22 (4): Paper No. 4.44, 27 pp.

[12]

Ceballos C, Pilaud V. Denominator vectors and compatibility degrees in cluster algebras of finite type. Trans. Amer. Math. Soc., 2015, 367(2): 1421-1439

[13]

Crawley-Boevey W. Lectures on representations of quivers, 1992

[14]

Fomin S. Total positivity and cluster algebras. Proceedings of the International Congress of Mathematicians, Volume II, 2010, New Delhi, Hindustan Book Agency125145

[15]

Fomin S, Reading N. Generalized cluster complexes and Coxeter combinatorics. Int. Math. Res. Not., 2005, 2005(44): 2709-2757

[16]

Fomin S, Shapiro M, Thurston D. Cluster algebras and triangulated surfaces, I. Cluster complexes. Acta Math., 2008, 201(1): 83-146

[17]

Fomin S, Zelevinsky A. Cluster algebras, I. Foundations. J. Amer. Math. Soc., 2002, 15(2): 497-529

[18]

Fomin S, Zelevinsky A. Cluster algebras, II. Finite type classification. Invent. Math., 2003, 154(1): 63-121

[19]

Iyama O, Yoshino Y. Mutation in triangulated categories and rigid Cohen–Macaulay modules. Invent. Math., 2008, 172(1): 117-168

[20]

Jacquet-Malo L. A bijection between m-cluster-tilting objects and (m + 2)-angulations in m-cluster categories. J. Algebra, 2022, 595: 581-632

[21]

Keller B. On triangulated orbit categories. Doc. Math., 2005, 10: 551-581

[22]

Keller B. Cluster algebras, quiver representations and triangulated categories. Triangulated Categories, 2010, Cambridge, Cambridge Univ. Press76160 375

[23]

Keller B, Reiten I. Acyclic Calabi-Yau categories. Compos. Math., 2008, 144(5): 1332-1348

[24]

Lamberti L. Combinatorial model for the cluster categories of type E. J. Algebraic Combin., 2015, 41(4): 1023-1054

[25]

Schiffler R. A geometric model for cluster categories of type Dn. J. Algebraic Combin., 2008, 27(1): 1-21

[26]

Thomas H. Defining an m-cluster category. J. Algebra, 2007, 318(1): 37-46

[27]

Torkildsen H. A geometric realization of the m cluster category of affine type Ã. Comm. Algebra, 2015, 43(6): 2541-2567

[28]

Wrålsen A. Rigid objects in higher cluster categories. J. Algebra, 2009, 321(2): 532-547

[29]

Zhou Y, Zhu B. Cluster combinatorics of d-cluster categories. J. Algebra, 2009, 321(10): 2898-2915

[30]

Zhu B. Generalized cluster complexes via quiver representations. J. Algebraic Combin., 2008, 27(1): 35-54

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/