PDF
Abstract
We study the Cauchy problem of the nonlinear Schrödinger equation posed on a (d + 1)-dimensional product manifolds $M={Z^{d}} \times {{\mathbb S}^1}$, where Zd denotes the d-dimensional compact manifold under the eigenvalue assumption. We prove the uniform local well-posedness of Hs solution with the defocusing subcritical nonlinearity and extend the results of [Amer. J. Math., 2004, 126(3): 569–605], [Ann. Sci. École Norm. Sup. (4), 2005, 38(2): 255–301] and [Sci. China Math., 2015, 58(5): 1023–1046] to the more general geometry. The main tools in our argument are multilinear estimates and Bony’s linearized technique.
Keywords
Multilinear spectral estimates
/
nonlinear Schrödinger equation
/
Bourgain space
Cite this article
Download citation ▾
Yilin Song, Ruixiao Zhang.
Local Uniform Well-posedness for Nonlinear Schrödinger Equation with General Nonlinearity on Product Manifolds.
Frontiers of Mathematics 1-37 DOI:10.1007/s11464-023-0122-x
| [1] |
Besse A. Manifolds All of Whose Geodesics Are Closed, 1978, Berlin-New York: Springer-Verlag.
|
| [2] |
Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I. Schrödinger equations. Geom. Funct. Anal., 1993, 3(2): 107-156.
|
| [3] |
Bourgain J. Exponential sums and nonlinear Schrödinger equations. Geom. Funct. Anal., 1993, 3(2): 157-178.
|
| [4] |
Bourgain J. Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Amer. Math. Soc., 1999, 12(1): 145-171.
|
| [5] |
Bourgain J, Demeter C. The proof of the l2 decoupling conjecture. Ann. of Math. (2), 2015, 182(1): 351-389.
|
| [6] |
Burq N, Gérard P, Tzvetkov N. Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math., 2004, 126(3): 569-605.
|
| [7] |
Burq N, Gérard P, Tzvetkov N. Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces. Invent. Math., 2005, 159(1): 187-223.
|
| [8] |
Burq N, Gérard P, Tzvetkov N. Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations. Ann. Sci. École Norm. Sup. (4), 2005, 38(2): 255-301.
|
| [9] |
Cazenave T, Weissler F. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs. Nonlinear Anal., 1990, 14(10): 807-836.
|
| [10] |
Colliander J, Keel M, Staffilani G, Takaoka H, Tao T. Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation on ℝ3. Ann. of Math. (2), 2008, 167(3): 767-865.
|
| [11] |
Dodson B. Global well-posedness and scattering for the defocusing, L2-critical Schrödinger equation when d ≥ 3. J. Amer. Math. Soc., 2012, 25(2): 429-463.
|
| [12] |
Duistermaat J, Guillemin V. The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math., 1975, 29(1): 39-79.
|
| [13] |
Ginibre J, Velo G. The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1985, 2(4): 309-327.
|
| [14] |
Gérard P. Nonlinear Schrödinger equations in inhomogeneous media: Wellposedness and illposedness of the Cauchy problem. International Congress of Mathematicians Madrid 2006, Vol. III. Invited Lectures, 2006, Zürich: European Mathematical Society, 157-182.
|
| [15] |
Kenig C, Ponce G, Vega L. On the ill-posedness of some canonical dispersive equations. Duke Math. J., 2001, 106(3): 617-633.
|
| [16] |
Sogge C. Fourier Integrals in Classical Analysis, 1993, Cambridge: Cambridge University Press.
|
| [17] |
Sulem C, Sulem P. The Nonlinear Schrödinger Equation—Self-focusing and Wave Collapse, 1999, New York: Springer-Verlag.
|
| [18] |
Tzvetkov N., Ill-posedness issues for nonlinear dispersive equations. 2007, arXiv:math/0411455v2
|
| [19] |
Yang J. Nonlinear Schrödinger equations on compact Zoll manifolds with odd growth. Sci. China Math., 2015, 58(5): 1023-1046.
|
| [20] |
Zhao T. Local well-posedness of critical nonlinear Schrödinger equation on Zoll manifolds of odd-growth. Math. Methods Appl. Sci., 2016, 39(12): 3226-3242.
|