From Right (n + 2)-angulated Categories to n-exangulated Categories

Jian He , Jing He , Panyue Zhou

Frontiers of Mathematics ›› 2024, Vol. 20 ›› Issue (3) : 669 -688.

PDF
Frontiers of Mathematics ›› 2024, Vol. 20 ›› Issue (3) : 669 -688. DOI: 10.1007/s11464-023-0121-y
Research Article

From Right (n + 2)-angulated Categories to n-exangulated Categories

Author information +
History +
PDF

Abstract

In this paper, we introduce the notion of a right semi-equivalence for right (n + 2)-angulated categories. Let

C
be an n-exangulated category and
X
be a strongly covariantly finite subcategory of
C
. We prove that the right (n + 2)-angulated category
C/X
has an n-suspension functor that is a right semi-equivalence under a natural assumption. As an application, we show that a right (n + 2)-angulated category has an n-exangulated structure if and only if the n-suspension functor is a right semi-equivalence. Furthermore, we also prove that an n-exangulated category
C
has the structure of a right (n + 2)-angulated category with a right semi-equivalence if and only if for any object
XC
, the morphism X → 0 is a trivial inflation.

Keywords

n-exangulated categories / extriangulated categories / right (n + 2)-angulated categories / right triangulated categories / right semi-equivalences

Cite this article

Download citation ▾
Jian He, Jing He, Panyue Zhou. From Right (n + 2)-angulated Categories to n-exangulated Categories. Frontiers of Mathematics, 2024, 20(3): 669-688 DOI:10.1007/s11464-023-0121-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AssemI, BeligiannisA, MarmaridisN. Right triangulated categories with right semi-equivalences. Algebras and Modules, II (Geiranger, 1996), 1998, Providence, RI, Amer. Math. Soc.: 17-3724

[2]

AuslanderM, SolbergØ. Relative homology and representation theory, I. Relative homology and homologically finite subcategories. Comm. Algebra, 1993, 21(9): 2995-3031

[3]

BeligiannisA, MarmaridisN. Left triangulated categories arising from contravariantly finite subcategories. Comm. Algebra, 1994, 22(12): 5021-5036

[4]

BerghP, ThauleM. The axioms for n-angulated categories. Algebr. Geom. Topol., 2013, 13(4): 2405-2428

[5]

GeissC, KellerB, OppermannS. n-angulated categories. J. Reine Angew. Math., 2013, 675: 101-120

[6]

HerschendM, LiuY, NakaokaH. n-exangulated categories (I): Definitions and fundamental properties. J. Algebra, 2021, 570: 531-586

[7]

HerschendM, LiuY, NakaokaH. n-exangulated categories (II): Constructions from n-cluster tilting subcategories. J. Algebra, 2022, 594: 636-684

[8]

HuJS, ZhangDD, ZhouPY. Proper classes and Gorensteinness in extriangulated categories. J. Algebra, 2020, 551: 23-60

[9]

HuJS, ZhangDD, ZhouPY. Two new classes of n-exangulated categories. J. Algebra, 2021, 568: 1-21

[10]

JassoG. n-abelian and n-exact categories. Math. Z., 2016, 283(3–4): 703-759

[11]

LinZQ. Right n-angulated categories arising from covariantly finite subcategories. Comm. Algebra, 2017, 45(2): 828-840

[12]

LiuY, ZhouPY. Frobenius n-exangulated categories. J. Algebra, 2020, 559: 161-183

[13]

LiuY, ZhouPY. From n-exangulated categories to n-abelian categories. J. Algebra, 2021, 579: 210-230

[14]

NakaokaH, PaluY. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég., 2019, 60(2): 117-193

[15]

Nakaoka H., Palu Y., External triangulation of the homotopy category of exact quasicategory. 2020, arXiv:2004.02479

[16]

Tattar A., The structure of aisles and co-aisles of t-structures and co-t-structures. Appl. Categ. Structures, 2024, 32(1): Paper No. 5, 32 pp.

[17]

ZhengQL, WeiJQ. (n+2)-angulated quotient categories. Algebra Colloq., 2019, 26(4): 689-720

[18]

ZhouPY. A right triangulated version of Gentle–Todorov’s theorem. Comm. Algebra, 2018, 46(1): 82-89

[19]

ZhouPY, ZhuB. Triangulated quotient categories revisited. J. Algebra, 2018, 502: 196-232

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/