Whittaker Modules over the N = 2 Super-BMS3 Algebra
Qingyan Wu , Shoulan Gao , Dong Liu
Frontiers of Mathematics ›› : 1 -14.
Whittaker Modules over the N = 2 Super-BMS3 Algebra
This paper focuses on the analysis of Whittaker modules and high-order Whittaker modules over the N = 2 super-BMS3 algebra. We provide a classification of Whittaker vectors and establish the necessary and sufficient conditions for Whittaker modules to be simple. Additionally, we study the simple quotient of the universal Whittaker module if it is not simple.
Whittaker module / high order Whittaker module / supersymmetric extension / super-BMS3 algebra
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
Banerjee N., Mitra A., Mukherjee D., Safari H.R., Supersymmetrization of deformed BMS algebras. Eur. Phys. J. C, 2023, 83: Art. No. 3 |
| [5] |
Barnich G., Donnay L., Matulich J., Troncoso R., Asymptotic symmetries and dynamics of three-dimensional flat supergravity. J. High Energy Phys., 2014, 2014: Art. No. 71 |
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Chen H., Dai X., Liu Y., and Su Y., A class of non-weight modules over the super-BMS3 algebra. 2023, arXiv:1911.09651 |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
Dilxat M., Gao S., Liu D., Whittaker modules over the N = 1 super-BMS3 algebra. J. Algebra Appl., 2024, 23 (5): Paper No. 2450088, 16 pp. |
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
Liu D., Pei Y., Xia L., Zhao K., Smooth modules over the N = 1 Bondi–Metzner–Sachs superalgebra. 2023, arXiv:2307.14608 |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
/
| 〈 |
|
〉 |