Finite-dimensional Nichols Algebras of Simple Yetter-Drinfeld Modules over the Suzuki Algebras

Yuxing Shi

Frontiers of Mathematics ›› 2024, Vol. 20 ›› Issue (4) : 829 -854.

PDF
Frontiers of Mathematics ›› 2024, Vol. 20 ›› Issue (4) : 829 -854. DOI: 10.1007/s11464-023-0103-0
Research Article

Finite-dimensional Nichols Algebras of Simple Yetter-Drinfeld Modules over the Suzuki Algebras

Author information +
History +
PDF

Abstract

In this paper, we continue to investigate finite-dimensional Nichols algebras of simple Yetter-Drinfeld modules over the Suzuki algebras

A N n μ λ
. It is finished for the case
A N 2 n μ λ
. As for the case
A N 2 n + 1 μ λ
, it boils down to the long-standing open problem: calculate dimensions of Nichols algebras of dihedral rack type
D 2 n + 1
. It is interesting to see that the Suzuki algebras are set-theoretical. We pose some question or problems for our future research. In particular, we are curious about how to generalize the correspondence between braidings of rack type and group algebras to braidings of set-theoretical type.

Keywords

Nichols algebra / Suzuki algebra / Hopf algebra / Yetter-Drinfeld module

Cite this article

Download citation ▾
Yuxing Shi. Finite-dimensional Nichols Algebras of Simple Yetter-Drinfeld Modules over the Suzuki Algebras. Frontiers of Mathematics, 2024, 20(4): 829-854 DOI:10.1007/s11464-023-0103-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AndruskiewitschN, AngionoI. On finite dimensional Nichols algebras of diagonal type. Bull. Math. Sci., 2017, 7(3): 353-573

[2]

AndruskiewitschN, FantinoF. On pointed Hopf algebras associated with alternating and dihedral groups. Rev. Un. Mat. Argentina, 2007, 48(3): 57-71

[3]

AndruskiewitschN, FantinoF, GarcíaGA, VendraminL. On twisted homogeneous racks of type D. Rev. Un. Mat. Argentina, 2010, 51(2): 1-16

[4]

AndruskiewitschN, FantinoF, GrañaM, VendraminL. Finite-dimensional pointed Hopf algebras with alternating groups are trivial. Ann. Mat. Pura Appl. (4), 2011, 190(2): 225-245

[5]

AndruskiewitschN, GiraldiJMJ. Nichols algebras that are quantum planes. Linear Multilinear Algebra, 2018, 66(5): 961-991

[6]

AndruskiewitschN, GrañaM. From racks to pointed Hopf algebras. Adv. Math., 2003, 178(2): 177-243

[7]

AndruskiewitschN, SchneiderHJ. Pointed Hopf algebras. New Directions in Hopf Algebras, 2002 Cambridge Cambridge Univ. Press 1-68 43

[8]

BrieskornE. Automorphic sets and braids and singularities. Braids (Santa Cruz, CA, 1986), 1988 Providence, RI Amer. Math. Soc. 45-115 78

[9]

DijkgraafR, PasquierV, RocheP. Quasi-quantum groups related to orbifold models. Modern Quantum Field Theory (Bombay, 1990), 1991 River Edge, NJ World Sci. Publ. 375-383

[10]

Hannah S., Laugwitz R., Ros Camacho A., Frobenius monoidal functors of Dijkgraaf–Witten categories and rigid Frobenius algebras. SIGMA Symmetry Integrability Geom. Methods Appl., 2023, 19: Paper No. 075, 42 pp.

[11]

HeckenbergerI. Classification of arithmetic root systems. Adv. Math., 2009, 220(1): 59-124

[12]

HeckenbergerI, VendraminL. The classification of Nichols algebras over groups with finite root system of rank two. J. Eur. Math. Soc. (JEMS), 2017, 19(7): 1977-2017

[13]

HuangH, YangY, ZhangY. On nondiagonal finite quasi-quantum groups over finite abelian groups. Selecta Math. (N.S.), 2018, 24(5): 4197-4221

[14]

KacG, PaljutkinVG. Finite ring groups. Trudy Moskov. Mat. Obšč., 1966, 15: 224-261

[15]

LuJ, YanM, ZhuYC. On the set-theoretical Yang–Baxter equation. Duke Math. J., 2000, 104(1): 1-18

[16]

NataleS. On group theoretical Hopf algebras and exact factorizations of finite groups. J. Algebra, 2003, 270(1): 199-211

[17]

SchauenburgP On Coquasitriangular Hopf Algebras and the Quantum Yang–Baxter Equation, 1992 Munich Verlag Reinhard Fischer 67

[18]

SchauenburgP. A characterization of the Borel-like subalgebras of quantum enveloping algebras. Comm. Algebra, 1996, 24(9): 2811-2823

[19]

ShiY. Finite-dimensional Hopf algebras over the Kac–Paljutkin algebra H 8. Rev. Un. Mat. Argentina, 2019, 60(1): 265-298

[20]

ShiY. Finite-dimensional Nichols algebras over the Suzuki algebras I: simple Yetter–Drinfeld modules of A N 2 n μ λ \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A_{N\,2n}^{\mu\lambda}$$\end{document}. Bull. Belg. Math. Soc. Simon Stevin, 2022, 29(2): 207-233

[21]

ShiY. Multinomial expansion and Nichols algebras associated to non-degenerate involutive solutions of the Yang–Baxter equation. Comm. Algebra, 2023, 51(6): 2532-2547

[22]

Shi Y., Finite-dimensional Nichols algebras over the Suzuki algebras II: simple Yetter–Drinfeld modules of A N 2 n + 1 μ λ \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A_{N\,2n+1}^{\mu\lambda}$$\end{document}. J. Algebra Appl., 2024, 23 (10): Paper No. 2450165

[23]

ShimizuK. Some computations of Frobenius–Schur indicators of the regular representations of Hopf algebras. Algebr. Represent. Theory, 2012, 15(2): 325-357

[24]

SolovievA. Non-unitary set-theoretical solutions to the quantum Yang–Baxter equation. Math. Res. Lett., 2000, 7(5–6): 577-596

[25]

SuzukiS. A family of braided cosemisimple Hopf algebras of finite dimension. Tsukuba J. Math., 1998, 22(1): 1-29

[26]

WakuiM. Polynomial invariants for a semisimple and cosemisimple Hopf algebra of finite dimension. J. Pure Appl. Algebra, 2010, 214(6): 701-728

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/