Extension of Holomorphic Canonical Forms on Complete d-Bounded Kähler Manifolds

Chunle Huang

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 1179 -1194.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (5) : 1179 -1194. DOI: 10.1007/s11464-023-0098-6
Research Article
research-article

Extension of Holomorphic Canonical Forms on Complete d-Bounded Kähler Manifolds

Author information +
History +
PDF

Abstract

In this paper we study the extension of holomorphic canonical forms on complete d-bounded Kähler manifolds by using L2 analytic methods and L2 Hodge theory, which generalizes some classical results to noncompact cases.

Keywords

Analytic methods / d-bounded Kähler manifolds / extension of canonical forms / deformation of complex structures / 32G05 / 58A14

Cite this article

Download citation ▾
Chunle Huang. Extension of Holomorphic Canonical Forms on Complete d-Bounded Kähler Manifolds. Frontiers of Mathematics, 2025, 20(5): 1179-1194 DOI:10.1007/s11464-023-0098-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DemaillyJPAnalytic Methods in Algebraic Geometry, 2010, Beijing. Higher Education Press. 1

[2]

DemaillyJPComplex Analytic and Differential Geometry, 2012

[3]

FujinoO. A transcendental approach to Kollár’s injectivity theorem. Osaka J. Math., 2012, 49(3): 833-852

[4]

GriffithsP, HarrisJPrinciples of Algebraic Geometry, 1978, New York. Wiley-Interscience.

[5]

GromovM. Kähler hyperbolicity and L2-Hodge theory. J. Differential Geom., 1991, 33(1): 263-292.

[6]

HörmanderL. L2 estimates and existence theorems for the ${\overline \partial}$ operator. Acta Math., 1965, 113: 89-152.

[7]

KashiwaraM, KawaiT. The Poincaré lemma for variations of polarized Hodge structure. Publ. Res. Inst. Math. Sci., 1987, 23(2): 345-407.

[8]

LiuK, RaoS. Remarks on the Cartan formula and its applications. Asian J. Math., 2012, 16(1): 157-169.

[9]

LiuK, RaoS, YangX. Quasi-isometry and deformations of Calabi–Yau manifolds. Invent. Math., 2015, 199(2): 423-453.

[10]

Liu K., Shen Y., Todorov A., A global Torelli theorem for Calabi–Yau manifolds. 2011, arXiv:1112.1163

[11]

LiuK, SunX, YauS. Recent development on the geometry of the Teichmuüller and moduli spaces of Riemann surfaces. Surveys in Differential Geometry. Vol. XIV. Geometry of Riemann Surfaces and Their Moduli Spaces, 2009, Somerville, MA. Int. Press. 22125914

[12]

Liu K., Zhu S., Solving equations with Hodge theory. 2018, arXiv:1803.01272

[13]

MatsumuraS. An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities. J. Algebraic Geom., 2018, 27(2): 305-337.

[14]

MorrowJ, KodairaKComplex Manifolds, 1971, New York-Montreal, Que.-London. Holt, Rinehart and Winston, Inc..

[15]

OhsawaTL2 Approaches in Several Complex Variables, 2015, Tokyo. Springer. .

[16]

SiuY. Invariance of plurigenera. Invent. Math., 1998, 134(3): 661-673.

[17]

SiuY. Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type. Complex Geometry (Göttingen, 2000), 2002, Berlin. Springer. 223277.

[18]

TianG. Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Petersson–Weil metric. Mathematical Aspects of String Theory (San Diego, Calif., 1986), 1987, Singapore. World Sci. Publishing. 629646.

[19]

TodorovA. The Weil–Petersson geometry of the moduli space of ${\mathbb S}{\mathbb U}(n \geq 3)$ (Calabi–Yau) manifolds, I. Comm. Math. Phys., 1989, 126(2): 325-346.

[20]

ZuckerS. Hodge theory with degenerating coefficients: L2 cohomology in the Poincaré metric. Ann. of Math. (2), 1979, 109(3): 415-476.

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/