Movement of Branch Points in Ahlfors’ Theory of Covering Surfaces

Yunling Chen , Tianrun Lin , Guangyuan Zhang

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 753 -794.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (4) : 753 -794. DOI: 10.1007/s11464-023-0086-x
Research Article

Movement of Branch Points in Ahlfors’ Theory of Covering Surfaces

Author information +
History +
PDF

Abstract

Ahlfors’ Second Fundamental Theorem for the simply connected surfaces over the Riemann sphere S states that for any set E q of distinct q points on S with q ≥ 3, there exists a constant h = h(E q), such that for any covering surface

Σ = ( f , U ¯ )
, one has
( q 2 ) A ( Σ ) 4 π n ¯ ( Σ , E q ) + h L ( Σ ) ,
where U is a Jordan domain in
C , f : U ¯ S
is an orientation-preserving, continuous, open and finite-to-one mapping, A(Σ) is the spherical area of Σ, L(Σ) is the spherical length of the boundary of Σ and
n ¯ ( Σ , E q ) = # [ f 1 ( E q ) U ]
means the cardinality of the set f−1 (E q) ∩ U. We denote by F the space of all simply covering surfaces over the sphere, the above pairs
( f , U ¯ )
, and write F (L) = {Σ ∈ F: L(Σ) ≤ L}. In a preprint by the third author Zhang of this paper, the precised bound of h is identified (see arXiv.2307.04623). The first key step of Zhang’s method is to prove the existence of extremal surfaces of the subspace
F ( L , m )
of F (L), and Zhang asserted without proof in that paper that the extremal surface of
F ( L , m )
can be found in the smaller subspace
F r ( L , m )
such that the defining function f of each surface of the form
( f , Δ ¯ )
in
F r ( L , m )
has no branch value outside E q. In this paper, we prove this assertion.

Keywords

Nevanlinna’s theory of value distribution / Ahlfors’ theory of covering surfaces / isoperimetric inequality / spherical geometry

Cite this article

Download citation ▾
Yunling Chen, Tianrun Lin, Guangyuan Zhang. Movement of Branch Points in Ahlfors’ Theory of Covering Surfaces. Frontiers of Mathematics, 2025, 20(4): 753-794 DOI:10.1007/s11464-023-0086-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AhlforsL Zur Theorie der Überlagerungsflächen. Acta Math., 1935, 65(1): 157-194

[2]

AhlforsL Complex Analysis—An Introduction to the Theory of Analytic Functions of One Complex Variable, 1978 Third New York McGraw-Hill Book Co.

[3]

EremenkoA. Ahlfors’ contribution to the theory of meromorphic functions. Lectures in Memory of Lars Ahlfors (Haifa, 1996), 2000 Ramat Gan Bar-Ilan Univ. 41-63 14

[4]

RickmanS Quasiregular Mappings, 1993 Berlin Springer-Verlag Results in Mathematics and Related Areas (3)] 26

[5]

StoïlowS Leçons sur les principes topologiques de la théorie des fonctions analytiques, Deuxième édition, augmentée de notes sur les fonctions analytiques et leurs surfaces de Riemann, 1956 Paris Gauthier-Villars

[6]

SunZ, ZhangG. Branch values in Ahlfors’ theory of covering surfaces. Sci. China Math., 2020, 63(8): 1535-1558

[7]

ZhangG. The precise bound for the area-length ratio in Ahlfors’ theory of covering surfaces. Invent. Math., 2013, 191(1): 197-253

[8]

Zhang G., The precise form of Ahlfors’ second fundamental theorem. 2023, arXiv:2307.04623v1

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/